

Some Studies on Algebraic Multigrid (AMG)

Klaus Stüben

International Workshop on "Algebraic Multigrid Methods", St. Wolfgang, June 26-28, 2000

Wolfgang-1

Overview

- "Classical" AMG
- Mature cases, performance
- Critical cases, discussion and remedies
 - Large positive couplings (bilinear FE)
 - Small eigenvalues (linear elasticity)
- Results

Algebraic Multigrid (AMG)

"Classical" AMG

Mimics geometric multigrid to solve sparse, linear equations (here s.p.d.)

$$A_h u^h = f^h \qquad \sum_i a_{ij}^h u_j^h = f_i^h \quad (i \in \Omega_h)$$

without exploiting geometric information

Components of AMG

- Smoothing by variable-wise GS relaxation
- Coarsening based on strong connectivity
- Interpolation based on matrix-coefficients (Restriction = transpose of interpolation)
- Galerkin coarse-level operators

Wolfgang-3

Hierarchical Approaches

Efficient solution requires hierarchical approaches!

However:

Computational cost and memory and robustness (speed of coarsening, sparsity on coarse levels) Convergence and robustness (quality of interpolation)

Classical Applications for AMG

M-matrices:
$$\sum_{i} a_{ij}^{h} \ge 0$$
, $a_{ij}^{h} \le 0$ $(i \ne j)$, $a_{ii}^{h} > 0$

Local property of error after smoothing

$$\sum_{j} a_{ij}^{h} e_{j}^{h} \approx 0 \quad (i \in \Omega_{h}) \implies e_{ii}^{h} \approx \frac{1}{a_{ii}^{h}} \sum_{j \neq i} |a_{ij}^{h}| e_{j}^{h} \quad (i \in \Omega_{h})$$
Local average!

Error is smooth in the direction of large (negative!) couplings: "strong couplings"

Wolfgang-5

Coarsening

Strong couplings

$$i$$
 is "strongly coupled" to j if $a_{ij} < 0$ and
$$-a_{ij} \geq \varepsilon_{str} \max \big\{ \ |a_{ik}| \ : \ a_{ik} < 0 \ \big\}$$

Coarsening "in the direction" of strong couplings

graph of strong couplings

C/F-splitting:

 $\Omega_h = F_h \cup C_h$ fine level

 $\Omega_H = C_h$ coarse level

 C_h : maximally independent set of variables (w.r.t. graph defined by strong couplings)

Coarsening

$$A^{h} \stackrel{?}{=} \frac{1}{3h^{2}} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}_{h}$$

minimal # of C-variables

aggregation based AMG

maximal # of C-variables

classical AMG

Wolfgang-7

Interpolation

Direct interpolation:

Interpolate from direct C-neighbors only

Standard interpolation:

Eliminate neighboring F-couplings

Afterwards: truncation of "small" interpolation weights!!

Classical Applications for AMG

Examples

$$\begin{bmatrix} -1 \\ -1 & 4 & -1 \end{bmatrix} e_0^h \approx 0$$

$$e_0^h \approx \left(e_N^h + e_S^h + e_W^h + e_E^h \right) / 4$$
strong couplings

$$\begin{bmatrix} -1 \\ -\varepsilon & 2(1+\varepsilon) & -\varepsilon \\ -1 \end{bmatrix} e_0^h \approx 0$$

$$e_0^h \approx (\underline{e}_N^h + e_S^h + \varepsilon e_W^h + \varepsilon e_E^h) / 2(1+\varepsilon)$$
strong couplings

Wolfgang-9

Classical Applications for AMG

$$-(au_x)_x - (bu_y)_y + cu_{xy} = f$$

a = 1	a = 1
$b = 10^3$	b = 1
c = 0	c = 2
a=1	103
u-1	$a = 10^{3}$
b=1	$a = 10^{\circ}$ $b = 1$

Discontinuous coefficients, strong anisotropies

"Smooth" error (pointwise relaxation)

Classical Applications for AMG

Locally adapted AMG coarsening, operator dependent interpolation

Wolfgang-11

Performance of AMG

A - complexity = $\sum_{i} |A_{i}| / |A_{1}| = 1.46$

Method:

AMG/cg

Iterations: 1151

10-3

10-5

10-11

10-13

Method:

Iterations: 25 Total time: 7.3 min

Mercedes-Benz, Computational Dynamics

Wolfgang-12

Performance of AMG

Residual versus error reduction

Wolfgang-13

Non-M-Matrices

Near M-matrix problems

"Small" positive coefficients can be ignored

$$\begin{bmatrix} -\frac{1}{4} & -1 & +\frac{1}{4} \\ -1 & 4 & -1 \\ +\frac{1}{4} & -1 & -\frac{1}{4} \end{bmatrix} \quad -1$$

Weakly diagonally dominant matrices

Large negative couplings \rightarrow smoothness Large positive couplings \rightarrow "strict" oscillations interpolation weights:
positive
negative

$$\begin{bmatrix} -1 \\ +1 & 4 & +1 \\ -1 \end{bmatrix}$$

More General Matrices

Sources of Convergence Problems

- Smoothing
 - There exists no well-defined direction of smoothness
 - AMG does not detect the direction of smoothness
- Coarse-level correction
 - accuracy of interpolation is insufficient for "relevant" error components

Investigation of model situations

Wolfgang-15

Small Eigenvalues

AMG interpolation

$$e_C \to \begin{pmatrix} e_F \\ e_C \end{pmatrix} : e_F^{(i)} = (I_{FC} e_C)^{(i)} = \sum_{j \in P_i} w_{ij} e_C^{(j)} \quad (i \in F)$$

Condition for h-independent two-level convergence

$$||e_F - I_{FC}e_C||_D^2 \le \tau ||e||_A^2 \quad \text{ for all} \quad e = (e_F, e_C)^T$$

Application to eigenvectors of A

$$A\phi = \lambda\phi \quad (||\phi|| = 1)$$

$$||\phi_F - I_{FC}\phi_C||_D^2 \le \lambda \tau$$

The smaller λ , the higher the required "accuracy"!

Unless ¢≈1, problems have to be expected!

Small Eigenvalues

Example:

$$A_c u \triangleq -\Delta_h u - cu \quad (0 \leq c < \lambda_{\min}, \text{ fixed } h)$$

 λ_{\min} smallest eigenvalue of A_0

$$A_0 \phi = \lambda_{\min} \phi$$
 ($||\phi|| = 1$)
 $A_c \phi = (\lambda_{\min} - c) \phi$

$$||\phi_F - I_{FC}\phi_C||_D^2 \le \tau(\lambda_{\min} - c) \rightarrow 0 \quad (c \rightarrow \lambda_{\min})$$

Wolfgang-17

AMG for Systems of PDEs

Classical AMG:

- Point (or block) approach
 - Formally straightforward
- "Unknown" approach
 (separate treatment of physical unknowns)
 - very simple extension of scalar AMG

Closely related:

- Aggregation based AMG (Vanek, Mandel)
 - Testfunction-based interpolation
- AMGe (Ruge & LLNL-group)
 - Interpolation based on local stiffness matrices

In the following: unknown approach

Linear Elasticity

Computation of (small) displacements due to external forces

Lamé equations

$$-2\mu \ div(\varepsilon(u)) - \lambda \ grad \ div(u) = f \quad (\Omega)$$

$$u = 0 \quad (\Gamma_0) \qquad \sigma(u) \bullet n = 0 \quad (\Gamma_1)$$
 fixed boundary free boundary

$$u = (u_1, u_2, u_3) \quad \text{displacements in} \quad x = (x_1, x_2, x_3)$$

$$\mathcal{E} = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{pmatrix} \quad \text{strain tensor:}$$

$$\varepsilon_{ij} = \frac{1}{2} (\partial u_i / \partial x_j + \partial u_j / \partial x_i)$$

$$\sigma = C \mathcal{E} \quad \text{Hooke's law } (\sigma = \text{stress tensor})$$

$$v = \text{Poisson ratio} \quad (0 < v < 1/2); \quad \text{steal: } v \approx 1/3$$

Discretization: Bilinear finite elements

(Higher order: "p-solver" (Thole))

Wolfgang-19

Linear Elasticity (2D)

Plane strain

(no strain in z-direction)

$$2\frac{1-\nu}{1-2\nu}u_{xx} + u_{yy} + \frac{1}{1-2\nu}v_{xy} = f_1$$

$$v_{xx} + 2\frac{1-\nu}{1-2\nu}v_{yy} + \frac{1}{1-2\nu}u_{xy} = f_2$$

Plane stress

(no stress in z-direction)

$$u_{xx} + \frac{1-\nu}{2}u_{yy} + \frac{1+\nu}{2}v_{xy} = f_1$$

$$\frac{1-\nu}{2}v_{xx} + v_{yy} + \frac{1+\nu}{2}u_{xy} = f_2$$

Linear Elasticity

Major problems:

- Anisotropies (large aspect ratios)
- Locking effects (bad discretization!)
- Nearly singular problems: The smaller the ratio of fixed and free boundary areas, the smaller the first eigenvalue of A

Eigenvalues in case of free boundaries:

Rigid body modes

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Translations

$$\begin{pmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} 0 \\ z \\ -y \end{pmatrix}, \begin{pmatrix} z \\ 0 \\ -x \end{pmatrix}, \begin{pmatrix} y \\ -x \\ 0 \end{pmatrix}$$

Rotations

Wolfgang-21

9-point Poisson Discretization

Average of standard finite difference stencils:

$$u_{xx} = \frac{1}{1+2\alpha} \frac{1}{h_x^2} \begin{pmatrix} -1 & 2 & -1 \end{pmatrix}_{h_x} \begin{pmatrix} \alpha \\ 1 \\ \alpha \end{pmatrix}_{h_y} \qquad u_{yy} = \frac{1}{1+2\alpha} \frac{1}{h_y^2} \begin{pmatrix} \alpha & 1 & \alpha \end{pmatrix}_{h_x} \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}_{h_y} \begin{pmatrix} -\alpha & 2\alpha & -\alpha \\ -1 & 2 & -1 \\ -\alpha & 2\alpha & -\alpha \end{pmatrix} \qquad \sim \begin{pmatrix} -\alpha & -1 & -\alpha \\ 2\alpha & 2 & 2\alpha \\ -\alpha & -1 & -\alpha \end{pmatrix}$$

positive definite: $-1/2 < \alpha \le 1/2$

Standard finite differences: $\alpha = 0$

Bilinear finite elements: $\alpha = 1/4$

Isotropic 9-point Case

$$-u_{xx} - u_{yy} = f$$

$$\alpha = -1/4 \qquad \alpha = 0 \qquad \alpha = 1/4$$

$$\begin{pmatrix} 1 & -3 & 1 \\ -3 & 8 & -3 \\ 1 & -3 & 1 \end{pmatrix} \qquad \begin{pmatrix} -1 & \\ -1 & 4 & -1 \\ \\ -1 & \end{pmatrix} \qquad \begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ \\ -1 & -1 & -1 \end{pmatrix}$$

$$\alpha = 1/2$$

$$\begin{pmatrix} -1 & -1 \\ 4 \\ -1 & -1 \end{pmatrix}$$

Anisotropic 9-point Case

$$-\varepsilon u_{xx} - u_{yy} = f \quad (\varepsilon \approx 0)$$

Anisotropic 9-point Case

Point relaxation smoothes the error in y-direction.

AMG just does not detect it properly!

$$\alpha = 0 \qquad \alpha = 1/4$$

$$\begin{pmatrix}
-1 \\
2 \\
-1
\end{pmatrix} \qquad \begin{pmatrix}
-\frac{1}{4} & -1 & -\frac{1}{4} \\
\frac{1}{2} & 2 & \frac{1}{2} \\
-\frac{1}{4} & -1 & -\frac{1}{4}
\end{pmatrix}$$

Modified definition of strong connections

Elimination of positive couplings:

Wolfgang-25

Anisotropic 9-point Case

Algebraically smooth error is either (geometrically) smooth in y-direction or highly oscillating in x-direction!

$$\alpha = 1/2$$

$$\begin{pmatrix} -\frac{1}{2} & -1 & -\frac{1}{2} \\ 1 & 2 & 1 \\ -\frac{1}{2} & -1 & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 1 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$$

AMG with <u>pointwise</u> smoothing cannot work any more! (<u>x-line</u> relaxation required)

Standard Interpolation, V-cycle

2D: hx=hy=1/128; 3D: hx=hy=hz=1/32

2D: hx=hy=1/32; 3D: hx=hy=hz=1/16

Wolfgang-27

Standard Interpolation, V-cycle

Reason for slow convergence

Increasingly small first eigenvalues of A

Remedy

Improved interpolation (RBMs instead of true first eigenvectors)

Strategies

Aggregation based AMG

Testfunction-based interpolation

AMGe

Interpolation based on local stiffness matrices

Here:

Interpolation based on geometrical information (just knowledge of coordinates)

Improvement of Interpolation

Condition for h-independent two-level convergence

$$||e_F - I_{FC}e_C||_D^2 \le \tau ||e||_A^2$$
 for all $e = (e_F, e_C)^T$

A posteriori improvement of weights w_{ij} :

$$\min\{||e_F - I_{FC}e_C||_D^2 : e \in \{test functions\}, ||e||_A = 1\}$$

Constraint:

$$\sum (w_{ij} - w_{ij}^{old})^2 \text{ minimal!}$$

In practice: Local least squares fit

{ *test functions*} = { *rigid body modes*}

separately for *u*, *v* and *w*:

$$u \rightarrow 1, y, z \qquad v \rightarrow 1, x, z \qquad w \rightarrow 1, x, y$$

(only in direction of strong couplings!)

Wolfgang-29

Improvement of Interpolation

Remarks on the implementation

- Variables with only 1 strong coupling become C-variable
- Coarsening: first boundary, then the interior
- Least squares fit is done immediately before truncation of interpolation takes place

Test Case: Cantilever

Wolfgang-31

Cantilever

Equidistant mesh case

Cantilever

Large aspect ratio case

1-Dimensional Anisotropy

Coarsening & standard interpolation

Coarsening & improved interpolation

Conclusions

- Modified AMG can cope with
 - large aspect ratios
 - any combination of fixed/free boundary conditions
 - RBMs are treated sufficiently well
- This required
 - modified definition of "strong connectivity"
 - improved interpolation (RBMs)
 - geometric information (point locations)
- Current development
 - reduction of AMG's complexity (3D!)
 (eg, exploit coordinates, aggressive coarsening)
 - replacement of Least Squares fit (relative sensitive to scaling factors, too expensive)
 - test & optimization for complex geometries
 (to which extent do we really have to improve interpolation?)

Wolfgang-35

Conclusions

Conservation law of difficulties:

The total number of difficulties in trying to solve complex problems remains constant.