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Overview

• “Classical” AMG
• Mature cases, performance
• Critical cases, discussion and remedies

– Large positive couplings (bilinear FE)
– Small eigenvalues (linear elasticity)

• Results
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•  Smoothing by variable-wise GS relaxation
•  Coarsening based on strong connectivity
•  Interpolation based on matrix-coefficients

 (Restriction = transpose of interpolation)
•  Galerkin coarse-level operators

Algebraic Multi grid (AMG)

Components of AMG
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“Classical” AMG

Mimics geometric multigrid to solve
sparse, linear equations (here s.p.d.)

without exploiting geometric information
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Hierarchical Approaches

Computational cost
and memory

(speed of coarsening,
sparsity on coarse levels)

Convergence
and robustness

(quality of interpolation)

Tradeoff between 

Efficient solution requires hierarchical approaches!

Efficiency Robustness

Generality

?

However:

How far can we get without exploiting geometry?
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Classical Applications for AMG
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Local property of error after smoothing
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Local average!

Error is smooth in the direction of large
(negative!) couplings:

“strong couplings”

M-matrices:
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Coarsenin g

� t �a a aij str ik ikH max | | :    0; @

Strong couplings

i  is “strongly coupled” to  j  if  aij < 0  and

Coarsening “in the direction” of strong couplings

:h h hF C � :H hC 

fine level

C/F-splitting:

coarse level

Ch: maximally independent set of variables
(w.r.t. graph defined by strong couplings)
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Interpolation

Direct interpolation: Standard interpolation:
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Interpolate from direct
C-neighbors only

Eliminate neighboring
F-couplings

Afterwards: truncation of “small” interpolation  weights!!
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Classical Applications for AMG
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"Smooth" error (pointwise relaxation)
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Discontinuous coefficients,
strong anisotropies

Classical Applications for AMG



Wolfgang-11

Locally adapted AMG coarsening,
operator dependent interpolation

Classical Applications for AMG
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A - complexity = |    A Ai
i
¦  | / | | .461 1

Performance of AMG

E-Class (2,23 mio cells)
Mercedes-Benz, Computational Dynamics
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Residual versus error reduction

Performance of AMG
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Near M-matrix problems
“Small” positive coefficients

can be ignored

Non-M-Matrices

Weakly diagonally dominant matrices
Large negative couplings  →  smoothness

Large positive couplings  →  „strict“ oscillations
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• Smoothing
–  There exists no well-defined direction of smoothness
–  AMG does not detect the direction of smoothness

• Coarse-level correction
–  accuracy of interpolation is insufficient for “relevant”

error components

More General Matrices

Investigation of model situations

Sources of Convergence Problems
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Small Ei genvalues

Condition for h-independent two-level convergence

|| || || ||e I e eF FC C D A� d2 2W

e I e w e i FF
i

FC C
i

ijj P C
j

i

( ) ( ) ( )( ) ( )  �
�¦    

AMG interpolation

e
e

eC
F

C

o
�
��

�
��
 :

Application to eigenvectors of  A

|| ||I I OWF FC C DI� d2

AI OI I  (|| ||= ) 1

The smaller λ, the higher the required „accuracy“!

e e eF C
T ( , )for all

Unless  φ≈1, problems have to be expected!
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Small Ei genvalues

Example:

A u u cuc h  � � �'

|| || ( ) ( )min minI I W O OF FC C DI c c� d � o o2 0     

A0 1I O I I  min || ||    ( )

( , )min0 d �c hO  fixed 

λmin smallest eigenvalue of A0

A ccI O I �( )min  
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• Point (or block) approach
– Formally straightforward

• “Unknown” approach
(separate treatment of physical unknowns)
– very simple extension of scalar AMG

AMG for Systems of PDEs

• Aggregation based AMG (Vanek, Mandel)
– Testfunction-based interpolation

• AMGe (Ruge & LLNL-group)
– Interpolation based on local stiffness matrices

Classical AMG:

Closely related:

In the following: unknown approach
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Linear Elasticity

CRANKSHAFT
(MSC-AUDI)

Computation of (small)
displacements due
to external forces � �  2P H O      div u grad div u f( ( )) ( ) ( ):

u 0 0   ( )* V ( ) ( )u nx  0 1   *

u u u u ( , , )1 2 3 displacements in

fixed boundary free boundary

Lamé equations

H H H

H H H

H H H

11 12 13

21 22 23

31 32 33

�

�

�
�

�

�

�
�H  

strain tensor:

H ij i j j iu x u x w w �w w1
2( / / )

x x x x ( , , )1 2 3

V H C Hooke‘s law  (σ = stress tensor)

Discretization:  Bilinear finite elements

ν = Poisson ratio  (0<ν<1/2);  steal: ν ≈ 1/3

(Higher order: “p-solver” (Thole))
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Linear Elasticity (2D)
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Plane strain
(no strain in z-direction)

Plane stress
(no stress in z-direction)

ν=1/3

ν=1/2
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Linear Elasticity

Major problems:

Eigenvalues in case of free boundaries:

Rigid body modes
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• Anisotropies (large aspect ratios)
• Locking effects (bad discretization!)
• Nearly singular problems:

The smaller the ratio of fixed and free boundary areas,
the smaller the first eigenvalue of A
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Translations Rotations

Wolfgang-22

uxx hx
hx

hy

 � �

�

�
�
�

�

�
�
��

� �1
1 2

1
2 1 2 1 1

D

D

D

  uyy hy
hx

hy

 � �

�

�
�
�

�

�
�
��

�

�

1
1 2

1
2 1

1

2

1
D

D D 

9-point Poisson Discretization
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positive definite:  −1/2 < α ≤ 1/2

Average of standard finite difference stencils:

Standard finite differences: α =  0
Bilinear finite elements: α = 1/4
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Isotropic 9-point Case

α = 0 α = 1/4 α = 1/2α = −1/4
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Anisotropic 9-point Case

� �  |H H    u u fxx yy ( 0)
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Anisotropic 9-point Case

α = 0 α = 1/4
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Modified definition of
strong connections

Elimination of
positive couplings:

Point relaxation smoothes the error in y-direction.
AMG just does not detect it properly!
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?
AMG with pointwise smoothing cannot work any more!

(x-line relaxation required)

Algebraically smooth error is either (geometrically) smooth
in y-direction or highly oscillating in x-direction!
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Standard Interpolation, V-cycle

16

1
1

Dirichlet :
all around

Dirichlet :
1 side

Dirichlet :
4 points

2D: hx=hy=1/32;
3D: hx=hy=hz=1/16

2D: hx=hy=1/128;
3D: hx=hy=hz=1/32

ρ2D(V) =0.265
ρ3D(V) =0.195

ρ2D(V) =0.258
ρ3D(V) =0.168

ρ2D(V) =0.98
ρ3D(V) =0.98

ρ2D(V) =0.97
ρ3D(V) =0.99

ρ2D(V) =0.521
ρ3D(V) =0.711

ρ2D(V) =0.701
ρ3D(V) =0.983
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Increasingly small first eigenvalues of A

Aggregation based AMG
Testfunction-based interpolation

AMGe
Interpolation based on local stiffness matrices

Here:
Interpolation based on geometrical information

(just knowledge of coordinates)

Reason for slow convergence

Strategies

Remedy

Standard Interpolation, V-cycle

Improved interpolation
(RBMs instead of true first eigenvectors)
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Improvement of Interpolation

Condition for h-independent two-level convergence

|| || || ||e I e eF FC C D A� d2 2W e e eF C
T ( , )for all

A posteriori improvement of weights  wij :

min || || : , || ||e I e e test functions eF FC C D A� �  2 1    ?;= ?
Constraint:

( )w wij ij
old�¦

2
minimal!

In practice: Local least squares fit

test functions rigid body modes: ? : ?   

separately for u, v and w:
uo1, ,y z vo1, ,x z wo1, ,x y

(only in direction of strong couplings!)
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Remarks on the implementation

• Variables with only 1 strong coupling become C-variable
• Coarsening: first boundary, then the interior
• Least squares fit is done immediately before truncation

of interpolation takes place

Improvement of Inter polation
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Test Case: Cantilever

Equidistant mesh:

2D:
hx=hy=1/32

(plane strain)

3D:
hx=hy=hz=1/16

L:
1,2,4,8,16,32

Large aspect ratio:

2D:
hx=1/128, hy=L*hx
(plane strain)

3D:
hx=hy=1/32, hz=L*hx

L:
1,2,4,8,16,32,64,128

L

1 1
11

Dirichlet :
full side

Dirichlet :
4 points

ν = 1/3
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Cantilever

2D, plain strain 3D

Equidistant mesh case
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2D, plain strain
(anisotropy in 1D)

Large aspect ratio case

Cantilever

3D
(anisotropy in 2D)
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1-Dimensional Anisotropy
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* * * * * * *
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Coarsening & improved interpolation

Coarsening & standard interpolation

....

.... ?
Remedy:

Block
relaxation
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• Modified AMG can cope with
– large aspect ratios
– any combination of fixed/free boundary conditions
– RBMs are treated sufficiently well

• This required
– modified definition of “strong connectivity”
– improved interpolation (RBMs)
– geometric information (point locations)

• Current development
– reduction of AMG’s complexity (3D!)

(eg, exploit coordinates, aggressive coarsening)

– replacement of Least Squares fit
(relative sensitive to scaling factors, too expensive)

– test & optimization for complex geometries
(to which extent do we really have to improve interpolation?)

Conclusions
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The total number of difficulties in trying to
solve complex problems remains constant.

Conclusions

Conservation law of difficulties:


