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When solving the linear system Ax = b with a Krylov method, the smallest eigenvalues of the
matrix A often slow down the convergence. In the SPD case, this is clearly highlighted by the
bound on the rate of convergence of the Conjugate Gradient method (CG) given by

||e(k)||A ≤ (

√

κ(A) − 1
√

κ(A) + 1
)k||e(0)||A, (1)

where e(k) = x∗ − x(k) denotes the forward error associated with the iterate at step k and

κ(A) =
λmax

λmin

denotes the condition number. From this bound it can be said that enlarging

the smallest eigenvalues would improve the convergence rate of CG. Consequently if the smallest
eigenvalues of A could be somehow “removed” the convergence of CG will be improved. Similarly
for unsymmetric systems arguments exist to explain the bad effect of the smallest eigenvalues on
the rate of convergence of the unsymmetric Krylov solver [1, 3, 5]. To cure this, several techniques
have been proposed in the last few years, mainly to improve the convergence of GMRES. In [5],
it is proposed to add a basis of the invariant space associated with the smallest eigenvalues to
the Krylov basis generated by GMRES. Another approach based on a low rank update of the
preconditionner for GMRES was proposed by [1, 3]. They consider the orthogonal complement of
the invariant subspace associated with the smallest eigenvalues to build a low rank update of the
preconditioned system. Finally, in [4] a preconditioner for GMRES based on a sequence of rank-
one updates is proposed that involves the left and right smallest eigenvectors. In our work, we
consider an explicit eigencomputation which makes the preconditioner independent of the Krylov
solver used in the actual solution of the linear system.

We first present our techniques for unsymmetric linear systems and then derive a variant for
symmetric and SPD matrices. We consider the solution of the linear system

Ax = b, (2)

where A is a n × n unsymmetric non singular matrix, x and b are vectors of size n. The linear
system is solved using a preconditioned Krylov solver and we denote by M1 the left preconditioner,
meaning that we solve

M1Ax = M1b. (3)

We assume that the preconditioned matrix M1A is diagonalizable, that is:

M1A = V ΛV −1, (4)
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with Λ = diag(λi), where |λ1| ≤ . . . ≤ |λn| are the eigenvalues and V = (vi) the associated
right eigenvectors. We denote by U = (ui) the associated left eigenvectors; we then have UHV =
diag(uH

i vi), with uH
i vi 6= 0, ∀i [6]. Let Vε be the set of right eigenvectors associated with the set

of eigenvalues λi such that |λi| ≤ ε. Similarly we define by Uε the corresponding subset of left
eigenvectors. We define by Ac = UH

ε M1AVε, Mc = VεA
−1
c UH

ε M1 and finally M = M1 + Mc. It
can be shown that MA is diagonalisable and we have MA = V −1diag(ηi)V with

{

ηi = λi if |λi| > ε,

ηi = 1 + λi if |λi| ≤ ε.
(5)

If only the eigenvalues have to be shifted without preserving the associated invariant subspaces,
the following result can be shown: Let W be such that Ãc = W HAVε has full rank, M̃c =
VεÃ

−1
c W H and finally M̃ = M1 + M̃c. Then M̃A is similar to a matrix whose eigenvalues are the

ones given in (5).
For right preconditioning, that is AM1y = b, similar results can be established. We should

point out that if the symmetry of the preconditioner has to be preserved an obvious choice exists.
For left preconditioning we can set W = Vε, that nevertheless does not imply that Ac has full
rank. For SPD matrices this choice leads to a SPD preconditioner. Indeed the preconditioner M̃

is the sum of a SPD matrix M1 and the low rank update that is symmetric semi-definite; we point
out that in this case the preconditioner has a similar form to the one proposed in [2] for two-level
preconditioners in non-overlapping domain decomposition.

In this talk we will give a sketch for the proofs of the results introduced above and show the
numerical efficiency of the proposed two-level preconditioner on:

1. sparse unsymmetric matrices from the RB matrix collection or arising from the discretization
of model convection diffusion equations,

2. sparse block structured unsymmetric and SPD matrices arising from non-overlapping domain
decomposition techniques in semiconductor device modelling,

3. dense symmetric complex non-Hermitian matrices arising from electromagnetism calcula-
tions.
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