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Abstract

We discuss issues related to domain decomposition and multilevel preconditioning tech-
niques in parallel computations. We implement a parallel preconditioner for solving general
sparse linear systems based on a two level block ILU factorization strategy. We give some
new data structures and strategies to construct a local coefficient matrix and a local Schur
complement matrix on each processor. The preconditioner constructed is fast and robust for
solving certain large sparse matrices. Numerical experiments show that our domain based two
level block ILU preconditioners are more robust and more efficient than some published ILU
preconditioners based on Schur complement techniques for parallel sparse matrix solutions.
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1 Introduction

High performance parallel computing techniques have undergone a gradual maturation process in
recent years. Developing efficient numerical linear algebra algorithms specifically aiming at high
performance parallel computers becomes a challenging issue.

A well known approach in parallel preconditioning techniques for general sparse linear systems
is to use ideas from domain decomposition concepts in which a processor is assigned a certain
number of rows of the linear system to be solved. For discussions related to this point of view
and comparisons of different domain decomposition strategies, see [1, 5] and the references therein.
Some techniques in this class include various distributed Schur complement methods for solving
general sparse linear systems developed in [8].

Recently, a class of high accuracy preconditioners (BILUM and BILUTM) that combine
the inherent parallelism of domain decomposition, the robustness of ILU factorization, and the
scalability potential of multigrid method have been developed in [10, 11]. They have been tested
to show promising convergence rate and scalability for solving certain problems. The construction
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of these preconditioners are based on block independent set ordering and recursive block ILU
factorization with Schur complements. Although this class of preconditioners contain obvious
parallelism within each level, their parallel implementations have not yet been reported.

In this study, the BILUTM preconditioner of Saad and Zhang [11] is modified to be im-
plemented as a two level block ILU preconditioner on distributed memory parallel architectures
(PBILU2). We used Saad’s PSPARSLIB library ! with MPI as basic communication routines.
Our PBILU2 preconditioner is compared with one of the most favorable Schur complement based
preconditioners of [8] in a few numerical experiments.

This article is organized as follows. In Section 2, we outline the distributed representations
of general sparse linear systems. In Section 3, we discuss the construction of a preconditioner
(PBILU2) based on two level block ILU factorization. Numerical experiments with a compari-
son of two Schur complement based preconditioners for solving various distributed linear systems
are presented in Section 4 to demonstrate the merits of our two level block ILU preconditioner.

Concluding remarks are given in Section 5.

2 Distributed Sparse Linear System and SLU Preconditioner
Let us consider a general sparse linear system of the form
Az =b, (1)

where A is an unstructured real-valued matrix of order n.

A distributed sparse linear system is a collection of sets of equations that is assigned to dif-
ferent processors. A type of distributed matrix data structure based on subdomain decomposition
concepts has been proposed in [7, 9]. Based on these concepts, the matrix A is assigned to each
processor, the unknowns in each processor are divided into three types: (1) interior unknowns that
are coupled only with local equations; (2) local interface unknowns that are coupled with both
nonlocal (external) and local equations; and (3) external interface unknowns that belong to other
subdomains and are coupled with local equations. The submatrix assigned to a certain processor,
say, processor i, is split into two parts: the local matrix A;, which acts on the local variables, and
an interface matrix X;, which acts on the external variables. Accordingly, the local equations on

a given processor can be written as
Aimi + XilYiext = b;.

The local matrix is reordered in such a way that the interface points are listed last after the interior

points. Then we have a local system written in a block format

<§: gj’)<Zj)+<2jeN?Eijyj):(£>’ (2)

where N; is the indices of subdomains that are neighbors to the reference subdomain . N; is ex-
actly the index set of processors that the reference processor needs to communicate with to receive
information. The term E;;y; is a part of the product X;y; ..+ which reflects the contribution to

1The PSPARSLIB library is available online from http://www.cs.umn.edu/Research/arpa/p_sparslib/psp-abs.html.



the local equation from the neighboring subdomain j. The preconditioners which are built upon
this distributed data structure will not form an approximation to the global Schur complement
explicitly. Such domain decomposition based preconditioners are exploited in [8]. One of the best
among these Schur complement based preconditioners is SLU which is the distributed approximate
Schur LU preconditioner [8]. Numerical results reported in [8] show that this Schur (I)LU pre-
conditioner demonstrates superior scalability performance over block Jacobi preconditioner and is
more efficient than the latter in terms of parallel run time.

3 A Two Level Block ILU Preconditioner

PBILU2 is a two level block ILU preconditioner based on the BILUTM techniques described in
[11]. As we noted before, BILUTM offers a good parallelism and robustness due to its large size
block independent set. The graph partitioner in BILUTM is the greedy algorithm for finding a
block independent set [10, 11].

3.1 Distributed matrix based on block independent set

Assume that a block independent set with a uniform block size k has been found, and the coefficient
matrix A is permuted into a block form:

A:PAPT:(g g) 3)

where P is a permutation matrix. At the same time, the global vector of unknowns z is split into
two subvectors (u,y)”,where u = (u1,...,um)T, ¥y = (¥1,...,ym)T. The right hand side vector b

is also conformally split into subvectors f and g. Such a reordering leads to a block system

B, F U1 f1
B, Fy U fa
E, , m g |’
Ey Cs Y2 92
E, Cm Ym gm

in which m is the number of processors used in the computation. Each block diagonal submatrix
B;,i=1,...,m, contains several independent blocks.

Those submatrices B;, F;, E;, C;, f; and g; are assigned to the same processor i. u; and y; are
the local part of the unknown vectors, respectively. When this processor-data assignment is done,
each processor holds several rows of the equations. The local system of equations in processor %

can be written as:

Eu+Cy = g,
An obvious difference between the partitionings (2) and (5) is that in (5), the action of F; is not
completely local, while it is local in (2). This viewpoint of local matrix facilitates the construction

of Schur complement matrix efficiently using parallel restricted Gaussian elimination in Section 3.2.



3.2 Derivation of Schur complement techniques in parallel

A key idea in domain decomposition techniques is to develop preconditioners for the global system
(1) by exploiting methods that approximately solve the Schur complement system in parallel. For
deriving the global Schur complement, other parts of the submatrix of coefficient matrix E need
to be partitioned and sent to a certain processor. There are two ways to partition the submatrix
E: one is to partition E by rows and the other is by columns. That is

E;
Es
E = ( M1 M2 e Mm ) = .
En
Those submatrices M;,¢ = 1,...,m, will also be assigned to the processor 3.

We now consider a block LU factorization of (3) in the form of

B F I 0 B F
(E C>:(EB—1I)<O s)’ ©)
where S is the global Schur complement:
S=C-EB'F. (7)
Suppose that we can invert B by some means, we may rewrite Equation (7) as:

o m
S = : | = MB'F.. (8)
Cm i=1
On the ith processor, a local submatrix A; is formed based on those submatrices assigned to

this processor and an ILU factorization on this local matrix will be performed. 2 This local matrix

on processor i looks like

B; | F;
0
B, F\ _ :
Ai = ( M; C; ) | M| G| ©)
0

We perform a restricted Gaussian elimination on the local matrix (9). First we perform
an (I)LU factorization (Gaussian elimination) to the upper part of the local matrix, i.e., to the
submatrix (B;, F;). We then continue the Gaussian elimination to the lower part (M;,C;), but
the elimination is only performed with respect to nonzero (and the accepted fill-in) entries of the
submatrix M;. The entries in C; are modified accordingly. When performing these operations on

the lower part, the upper part of the matrix is only accessed, but not modified, see Figure 1.

2In PBILUZ2, the “local” matrix A; means it is stored on the local processor 4. It does not necessarily mean that
A; acts only on interior unknowns.



Accessed, not modified

Not accessed, ,/ B F
not modified Accessed, not modified
Processed, not accessed
M| C -
Not processed, not accessed

Figure 1: Tllustration of the restricted IKJ version of Gaussian elimination of the lower part. Here
the submatrices B, F, M, C represent the local submatrices B;, F;, M; and C}, respectively, as in
Equation (9).

After this is done, we obtain a new reduced submatrix C; and it forms a piece of the global
Schur complement matrix. If the Gaussian elimination is an exact factorization, the global Schur

complement matrix can be formed by summing all these submatrices C; together. That is

S=Ci+Co+-+Chn. (10)
Each submatrix C;,i = 1,...,m, is partitioned into mn parts (using the same partitionings as the
original submatrix C), and the corresponding parts are scattered to relevant processors. After
receiving and summing all of those parts of submatrices which have been scattered from different
processors, the “local” Schur complement matrix S; is formed. Here “local” means some rows of

the global Schur complement that are held in a given processor. Note that S; # Cj.

3.3 Induced global preconditioner

It is possible to develop preconditioners for the global system (1) by exploiting methods that ap-
proximately solve the reduced system (7). Considering the block LU factorization in the Equation
(6), this block factored matrix can be preconditioned by replacing S in (5) by S, where S is an ap-
proximation to the global Schur complement matrix S, formed in (10). Therefore, an approximate

reduced system is Sy = g, i.e.,

S X2 - Xim Y1 g1

Xgl Sz T sz Y2 92
. . . . = . , (11)

Xmi Xm2 - Sm Ym Jm

where the submatrix X;; is a boundary matrix which acts on external variables y;,j # 4. §; is the

local (Schur complement system) right hand side which can be computed as



Bi'fi
9i=9i — E; :
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There are numerous ways to solve this reduced system. One option considered in [8] and
adopted in our implementation starts with replacing

Siyi + Z Xijyj = Gi
JEN;
by an approximate system of the form
yi+ 57! Z Xijy; = S; i,
JEN;

in which S; is a local approximation to the local Schur complement matrix S;. This formulation
can be viewed as a block Jacobi preconditioned version of the Schur complement system (11). The
above system is then solved by an iterative accelerator such as GMRES which requires a solution
with S; at each step. In our current implementation, an ILUT factorization of S; is performed for

the purpose of block Jacobi preconditioning.

4 Numerical Experiments

In numerical experiments, we compared the performance of the PBILU2 preconditioner we just
described and the distributed Schur complement LU (SLU) preconditioner of [8] for solving a
few sparse matrices from discretized two dimensional convection diffusion problems, and from
application problems in computational fluid dynamics.

The computations were carried out on a 32 processor (200 MHz) subcomplex of a (64 pro-
cessor) HP Exemplar 2200 (X-Class) supercomputer at the University of Kentucky. Many of the
communication subroutines and the SLU preconditioner code were taken from the PSPARSLIB
library [6].

In all tables containing numerical results, “n” denotes the dimension of the matrix; “nnz”
represents the number of nonzeros in the sparse matrix; “np” is the number of processors used;
“iter” is the number of preconditioned FGMRES iterations (outer iterations); “F-time” is the CPU
time in seconds for the preconditioned solution process with FGMRES; “P-time” is the total CPU
time in seconds for solving the given sparse matrix, starting from the initial distribution of matrix
data to each processor from the master processor (processor 0). “S-ratio” stands for the sparsity
ratio, which is the ratio between the number of nonzeros in the preconditioner and the number
of nonzeros in the original matrix A. k is the block size used in PBILU2, “p” is the number of
nonzeros allowed in each of the L and U factors of the ILU factorizations, 7 is the drop tolerance.

p and 7 have the same meaning as those used in Saad’s ILUT [7].

4.1 5-POINT and 9-POINT matrices

We first compared the parallel performance of different preconditioners for solving some 5-POINT
and 9-POINT matrices. Those matrices were generated by discretizing the following convection



Table 1: 5-POINT matrix: Re = 0, n = 5112, nnz = 1303561, k = 200, p = 30,7 = 10~*. One
level overlapping (nonoverlapping for results in brackets) for SLU.

Preconditioner | np iter | F-time | P-time S-ratio
PBILU2 4 38 | 86.56 | 114.25 5.00
SLU 36 (40) | 114.14 | 144.29 | 10.50 (10.55)
PBILU2 8 37| 4145 | 56.07 5.00
SLU 39 (42) 64.11 82.34 | 10.20 (10.26)
PBILU2 16 35| 20.34 | 28.77 4.97
SLU 42 (46) 36.11 51.78 9.50 (9.65)
PBILU2 24 32 14.83 21.16 4.99
SLU 44 (50) 3147 | 51.59 9.15 (9.25)
PBILU2 32 31 13.10 18.03 5.03
SLU 46 (56) 21.49 | 59.79 8.90 (9.02)

Table 2: 9-POINT matrix: Re = 10%, n = 6002, nnz = 3232804. k = 200, p = 30,7 = 10~%. One
level overlapping for SLU.

Preconditioner | mp | iter | F-time | P-time | S-ratio
PBILU2 4| 14| 36.78 | 62.88 2.30
SLU 13 | 43.87 | 124.80 4.50
PBILU2 8| 14| 2074 | 35.34 3.17
SLU 15| 34.36 | 91.80 4.52
PBILU2 16 | 13 12.81 21.77 2.30
SLU 15 1797 | 4561 4.51
PBILU2 24| 14| 10.17 17.32 2.30
SLU 19 16.76 | 46.66 4.50
PBILU2 32| 14| 10.76 17.52 2.33
SLU 19 | 24.31 | 151.24 4.51

diffusion equation using the standard 5-point central difference scheme or the fourth order 9-point
difference scheme [3]

Ugz + Uyy + Relexp(zy — 1) uy — exp(—2zy) uy] = f(z,y),

on a two dimensional unit square. Here Re is the so-called Reynolds number. The right hand side
function was not used since we generated artificial right hand sides for the sparse linear systems
as stated above.

We first tested 5-POINT matrix for two preconditioners PBILU2 and SLU. For SLU, we
tested two cases: one level overlapping of subdomains and nonoverlapping of subdomains. The
test results are listed in Table 1.

Another set of tests were run for solving the 9-POINT matrix listed in Table 2 and Figure
2. Since the overlapping version of SLU converged faster than the nonoverlapping version, we only
report results with overlapping version of SLU in the remaining numerical tests.

In our experiments, we found that our PBILU2 preconditioner is faster and more efficient
than the SLU preconditioner of [8] for solving those problems. Figure 2 also indicates that the
convergence rate of PBILU2 behaved better than that of SLU as the number of processors increased.



140

120+ B
\ dash line ——— SLU iteration

100 - \ solid line ——— PBILU2 iteration B

60~

iteration time (F-time)

40

20

1 1
0 5 10 15 20 25 30 35
number of processors

Figure 2: Comparison of parallel iteration time (F-time) for the PBILU2 and SLU preconditioners
for solving a 9-POINT matrix with Re = 0 and n = 5112. Parameters used are p = 30,7 = 1074,
and k = 200.

4.2 FIDAP matrices and Navier-Stokes matrices

This set of test matrices were extracted from the test problems provided in the FIDAP package
[2]. ® As many of these matrices have small or zero diagonals, they are difficult to solve with
standard ILU preconditioners. We tested more than 31 FIDAP matrices for both preconditioners.
We found that PBILU2 can solve more than twice as many FIDAP matrices as SLU does. In our
tests, PBILU2 solved 20 FIDAP matrices and SLU solved 9. These tests show that our parallel
two level block ILU preconditioner is more robust than the SLU preconditioner.

Table 3: FIDAPM29 matrix, n = 13668, k = 400, nnz = 186294

Preconditioner | np p T iter | F-time | P-time | S-ratio
PBILU2 2150 | 10710 | 11 6.39 20.61 4.35
SLU 300 | 10710 | 25 22.54 | 47.45 7.8
PBILU2 41150 | 10719 | 12 3.21 10.17 4.28
SLU 300 | 10710 -
PBILU2 8150 | 10710 | 23 2.64 6.49 411
SLU 300 | 10710 | 211 81.49 92.80 7.84
PBILU2 16 | 150 | 10710 | 164 10.19 12.44 3.81
SLU 300 | 10710 | 138 26.69 29.99 7.01
PBILU2 24 | 150 | 10710 | 292 15.15 16.86 3.81
SLU 300 | 10710 -
Note that “~” in Table 3 means that the preconditioned iterative method did not converge

3These matrices are available online from the MatrixMarket of the National Institute of Standards and Technology
at http://math.nist.gov/MatrixMarket.



Table 4: S30a matrix, n = 35411, nnz = 5558521. p = 500, 7 = 10719,
Preconditioner | np | k | iter | S-ratio
8 | 800 6 2.56
PBILU2 16 | 800 13 2.39
24 | 400 8 2.05
32 | 400 9 1.87

or the number of iterations is greater than 500. We varied the parameters of fill-in (p) and drop
tolerance (7) in Table 3 for both preconditioners and adjusted the size of block independent set for
the PBILU2 approach. PBILU2 is clearly shown to be more robust than SLU to solve this FIDAP
matrix.

The Navier-Stokes matrices are from fully coupled mixed finite element discretization of three
dimensional Navier-Stokes equations [12]. S30a means that the matrix is from the first Newton
step of the nonlinear iterations, with 30 elements in each of the x and y coordinate directions, and
1 element in the z coordinate direction. There is only one element in the z coordinate direction
because of the limitation on the computer memory used to generate these matrices. The same
explanation holds for the S10a matrix. We tested S10a and S30a matrices. PBILU2 was able to
solve these CFD matrices with small 7 values. SLU did not converge for these test problems. The
test result for matrix S30a is listed in Table 4.

5 Concluding Remarks

We have implemented a parallel two level block ILU preconditioner based on a Schur complement
preconditioning. We discussed the details on the distribution of “small” independent blocks to form
a subdomain in each processor. We gave a computational procedure for constructing a distributed
Schur complement matrix in parallel. We compared our parallel preconditioner, PBILU2, with a
scalable parallel two level Schur LU preconditioner (SLU) published recently. Numerical experi-
ments show that PBILU2 demonstrates good scalability in solving large sparse linear systems on
parallel computers. We also found that PBILU2 is faster and computationally more efficient than
SLU in most of our test cases. PBILU2 is also efficient in terms of memory consumption, since it
uses less memory space than SLU to achieve better convergence rate.

We plan to extend our parallel two level block ILU preconditioner to truly parallel multilevel
block ILU preconditioners. The key problem in this future is to develop parallel graph partitioning
algorithms to find block independent set efficiently. The ideas used in parallel algorithms to find

maximum independent set will be examined [4].
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