
PARTITION OF UNITY FOR THE STOKES PROBLEM ON
NONMATCHING GRIDS

CONSTANTIN BACUTA AND JINCHAO XU

Abstract. We consider the Stokes Problem on a plane polygonal domain Ω ⊂ R2. We
propose a finite element method for overlapping or nonmatching grids for the Stokes
Problem based on the partition of unity method. We prove that the discrete inf-sup
condition holds with a constant independent of the overlapping size of the subdomains.
The results are valid for multiple subdomains and any spatial dimension.

1. Introduction

In the present literature the study of finite element method applied to overlapping
grids is done mainly in the framework of mortar method or Lagrange multiplier (see
[1, 12, 7]). A new finite element discretization for elliptic boundary value problems was
introduced by Huang and Xu [10], using a partition of unity method which has the roots
in [2]. A significant amount of literature was dedicated to numerical solutions of the
Stokes problem (see e.g., [9, 5] and the references of this two books). By our knowledge
not to much was done for solving discretization of the Stokes problem when overlapping
grids or nonmatching grids are involved. In this paper, following the ideas of Huang and
Xu, we shall introduce a conforming finite element method, using a partition of unity
type argument for the steady-state Stokes problem.

2. The continuous Stokes problem problem and overlapping subdomains
discretization

Even though the results hold in a more general context and for a general dimension, for
clarity, we present the main ideas of the discretization method in case of two subdomains
in R2. Given a bounded domain Let Ω ⊂ R2, be a bounded domain with boundary ∂Ω
and let Γ be a closed subset of ∂Ω. By H1

0 (Ω; Γ) we denote the closure in H1 topology
of C∞(Ω̄) functions that vanish in a neighborhood of Γ.

The steady-state Stokes problem in the velocity-pressure formulation is :
Find the vector-valued function u and the scalar-valued function p satisfying

(2.1)





−∆u−∇p = F in Ω,
∇ · u = 0 in Ω,

u = 0 on ∂Ω,∫
Ω
p = 0 .
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Let (·, ·)Ω, or simply (·, ·), denote the L2(Ω)-inner product applied to a pair of either
scalar or vector functions. Similarly, let ‖·‖0,Ω, or simply ‖·‖ denote the L2(Ω)-norm.
Define V = (H1

0 (Ω))2 and P = L2
0(Ω) the subspace of L2(Ω) consisting of functions with

zero mean value on Ω. The variational formulation of the problem (2.1) is
Find (u, p) ∈ (V, P ) such that

(2.2)

{
a(u,v) + b(v, p) = (F,v) for all v ∈ V,

b(u, q) = 0 for all q ∈ P.
where a is the Dirichlet form on Ω defined by

a(u,v) =
2∑

i=1

∫

Ω

∇ui · ∇vi dx.

and

b(v, q) = (q,∇ · v).

We assume that the inf-sup condition

(2.3) c0‖p‖ ≤ sup
v∈V

(p,∇ · v)

‖v‖1,Ω
, for all p ∈ P,

holds for a positive constant c0. Consequently, there is a unique solution (u, p) ∈ (V, P )
of (2.2). Let Ω be covered by a family of overlapping subdomains. For a better pre-
sentation of the main idea, we consider the case of two overlapping subdomains with
polygonal shapes. Let Ω1,Ω2 be overlapping subdomains of Ω satisfying Ω = Ω1 ∪ Ω2

and Ω0 = Ω1 ∩ Ω2, We further assume that Ω1 and Ω2 are partitioned by quassiuniform
finite element triangulations T1 and T2 of maximal mesh sizes h1 and h2 ( which might
not match on Ω0). We assume that Ω0 is a strip-type domain of width d = O(h1) (the
dotted region shown in Fig. 1).

Ω

Ω

1

2

Ω 0

Figure 1. Overlapping grids
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Next, we let {φ1, φ2} be a partition of unity subordinate to the covering partition
{Ω1,Ω2} of Ω, i.e. φ1 + φ2 = 1, 0 ≤ φi ≤ 1, and ‖∇φi‖∞,Ω ≤ 1/d. We further assume
that φ1 ≡ 1 on Ω1\Ω0 and φ1 ≡ 0 on Ω2\Ω0.

To obtain a conforming discretization of the variational problem (2.2) we define first
the following spaces

Phi(Ωi) := {p ∈ C0(Ωi)| p|K ∈ P1},

P̂hi(Ωi) := {p ∈ Phi(Ωi)| p = 0 on ∂Ωi\∂Ω},

Vhi(Ωi) := {v ∈ (H1
0 (Ωi; Ω ∩ ∂Ωi))

2| v|K ∈ P1},
where, P1 denotes the set of polynomials in two variables of degree at most one. Using
the above spaces, we are interested in building stable pairs (Vh, Ph), where Vh ⊂ V and
Ph ⊂ P , i.e., pairs (Vh, Ph) which satisfy the discrete inf-sup condition

(2.4) c0‖p‖ ≤ sup
v∈Vh

(p,∇ · v)

‖v‖1,Ω
, for all p ∈ Ph.

If the above condition is satisfied then the discrete variational problem:
Find (uh, ph) ∈ Vh × Ph such that

(2.5)

{
a(uh,v) + b(v, ph) = (F,v) for all v ∈ Vh,

b(uh, q) = 0 for all q ∈ Ph,
has unique solution and the error satisfies,

|u− uh|1,Ω + ‖p− ph‖0,Ω ≤ C( inf
vh∈Vh

|u− vh|1,Ω + inf
qh∈Ph

‖p− qh‖0,Ω),

with C depending on c0, but independent of h (or the spaces Vh and Ph). In the next two
sections we build stable pairs (Vh, Ph) which have also good approximation properties.

3. First mini-type stable pair

We introduce a space B of bubble functions associated with the “union “ partition
T := T1 ∪ T2 as follows. For a triangle T we define the bubble function BT supported
on T as the product of the nodal functions associated with the vertices of T . If K =
T1 ∩ T2 ∈ T1 ∪ T2 we define

BK := BT1 ·BT2 .

If K = Ti for some Ti ∈ Ti, (i = 1, 2), then we just take BK := BTi (see Fig. 2). A
composite, conforming finite element space for velocity can be defined as

Vh ≡ Vh(Ω) := φ1Vh1 + φ2Vh2 +B2.

The discrete pressure space we associate with Vh is

Ph := (P̂h1(Ω1) + P̂h2(Ω2)) ∩ P.
Let h := h1 ≥ h2 = rh1, for some positive constant r. Before we state the main result

of this section we introduce the following assumption:

• (A1) There exists a positive constant c such that
|K| ∼= ch2 for any K ∈ T ,

where |K| denotes the Lebesgue measure of K ∈ T .
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Figure 2. Overlapping triangles.

Theorem 3.1. If (A1) is satisfied, then the pair (Vh, Ph) defined above is a stable pair.

Proof. We will construct two operators Π1 : V → Vh, Π2 : V → Vh with the following
properties:

(3.1) |v− Π1v|1,Ω . |v|1,Ω, for all v ∈ V,

(3.2) |Π2(I − Π1)v|1,Ω . |v|1,Ω, for all v ∈ V

(3.3) b(v − Π2v, q) = 0, for all q ∈ Ph,v ∈ V

Having constructed Π1 and Π2, the operator Πh = Π1 + Π2(I − Π1) satisfies the the
hypothesis of Proposition II 2.8 in [5], for example, and the inf-sup condition follows
according with this Proposition.

For i = 1, 2 let Vi := (H1
0 (Ωi; Ω ∩ ∂Ωi))

2 and define Πi
1 : Vi → Vhi to be good

regularization operators. For example, we can take Πi
1 to be Clement-type operators .

Thus,

(3.4) ‖v − Πi
1v‖0,Ωi . hi|v|1,Ωi, for all v ∈ Vi,

and

(3.5) |v − Πi
1v|1,Ωi . |v|1,Ωi, for all v ∈ Vi.

We define Π1 as follows:

Π1v := φ1Π1
1(v|Ω1

) + φ2Π1
2(v|Ω2

)

Note that v|Ωi ∈ Vi and Π1v ∈ Vh. Thus Π1 is well defined. In order to simplify

the notation we denote Π1
i (v|Ωi ) simply by Π1

iv. Next, we verify that the operator Π1

satisfies (3.1). We will prove first that

(3.6) ‖v− Π1v‖0,Ω . h|v|1,Ω, for all v ∈ V.
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Indeed,

‖v − Π1v‖0,Ω =

∥∥∥∥∥
2∑

i=1

φi(v − Πi
1v)

∥∥∥∥∥
0,Ω

≤
∥∥∥∥∥

2∑

i=1

φi(v − Πi
1v)

∥∥∥∥∥
0,Ωi

≤
2∑

i=1

∥∥v − Πi
1v
∥∥

0,Ωi
.

2∑

i=1

hi|v|1,Ωi . h|v|1,Ω.

To justify (3.1) we have

|v− Π1v|1,Ω ≤
2∑

i=1

|φi(v − Πi
1v)|1,Ωi ≤

2∑

i=1

|∇φi(v − Πi
1v)|0,Ωi +

2∑

i=1

|v− Πi
1v|1,Ωi

. d−1

2∑

i=1

|v − Πi
1v|0,Ωi +

2∑

i=1

|v|1,Ωi . |v|1,Ω.

Next, we define Π2. For v ∈ V and K ∈ T ,

Π2v|K := αBK,

where α =

(
α1

α2

)
is defined such that

∫
K

(v − Π2v) dx = 0 i.e.,

α =

∫
K

v dx∫
K
BK dx

For v ∈ V and q ∈ Ph we have

b(v − Π2v, q) = −(v − Π2v,∇q) = −
∑

K∈T
∇q
∫

K

(v − Π2v) dx = 0.

Thus (3.6) holds and all we have to verify is that (3.2) holds. Let us note that

(3.7) |Π2v|1,K . h−1|v|0,K for all v ∈ V.

The proof of (3.7) is a consequence of the following two estimates.

|Π2v|21,K = (α2
1 + α2

2)

∫

K

|∇BK|2 . |α|2|K|h−2,

and

|α|2 =
|
∫
K

v dx|2
|
∫
K
BK dx|2 .

|K||v|20,K
h2

Thus, from (3.7) and (3.6) we obtain

|Π2(I − Π1)v|21,Ω =
∑

K∈T
|Π2(I − Π1)v|21,K .

∑

K∈T
h−2|(I − Π1)v|20,K . |v|21,Ω,

which proves that (3.2) holds and concludes the the proof of the theorem. �
Remark 3.1. In the special case when any K ∈ T is a triangle in either T1 or T2 (any
T1 ∈ T1, T1 ⊂ Ω0 is an union of triangles of T2 and any K ∈ T which is not subset of
Ω0 belongs to either T1 or T2), we have that (A1) is satisfied. Moreover we have

• (A1)’ There exists a positive constant c such that
|Ti| ∼= ch2

i for any K = Ti ∈ T .
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Following the proof of the above theorem in this particular case, we deduce that the
constants which are involved in (3.1) and (3.2) are also independent of the ratio r =
h2/h1. Consequently, the inf-sup condition holds with a constant independent of h2, h1

and r.

Remark 3.2. According with [10] the space Vh has good approximation properties,

inf
vh∈Vh

‖v − vh‖1,Ω . h1‖v‖1,Ω1 + h2‖v‖1,Ω2, for all v ∈ V.

If P̂h1(Ω1) + P̂h2(Ω2) is a linear space which contains the constant function, then one
can prove that the space Ph has the following approximation property

inf
ph∈Ph

‖P − Ph‖0,Ω . h‖P‖1,Ω, for all ph ∈ Ph.

Therefore the pair (Vh, Ph) has good approximation properties and is a stable pair.

On the other hand, if P̂h1(Ω1) + P̂h2(Ω2) is a linear space which does not have good
approximation properties we can consider for the discrete pressure space Ph a partition
of unity type space and modify accordingly the velocity space. This is the subject of the
next section.

4. Second mini-type stable pair

A discrete pressure space Ph with good approximation properties (see [10]) is the space

Ph := (φ1Ph1(Ω1) + φ2Ph2(Ω2)) ∩ P.
Since the pressure space is enriched (on the overlapping region), in order to have satisfied
the inf-sup condition, we have to enrich the velocity space also. As in the previous section
we define a bubble space B. For each K ∈ T , K ⊂ Ω0 we let Bj

K, j = 1, 2 to be two
bubble functions supported onK which have certain properties and are to be specified
later. For each one the of remaining regions K ∈ T we consider only one bubble function
defined as in the first case. We let B to be the span of all this bubble functions and
define the discrete space Vh as before

Vh := φ1Vh1 + φ2Vh2 +B2.

Theorem 4.1. If (A1) is satisfied, then the new pair (Vh, Ph) defined above is a stable
pair.

Proof. We follow the construction procedure revealed in Theorem 3.1. The Π1 operator
is the one defined in the proof of Theorem 3.1. Next, we define Π2 such that (3.2) and
(3.6) are satisfied. Let φ1 := φ and φ2 := 1 − φ. To simplify the computation we will
assume that φ is a linear function in only one variable, say x. Thus, for any q ∈ Ph and
any K ∈ T , K ⊂ Ω0 we have that

∇q|K ∈ span

{(
x
0

)
,

(
y
x

)
,

(
1
0

)
,

(
0
1

)}

We define Π2 as follows

Π2v|K :=

(
α1

α2

)
B1
K +

(
β1

β2

)
B2
K,
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if K ∈ T , K ⊂ Ω0 and Π2v|K :=

(
α1

α2

)
BK ,, if K ∈ T and K ⊂ Ωi\Ω0, i = 1, 2. The

constants α =

(
α1

α2

)
and β =

(
β1

β2

)
are determined such that

∫
K

(v − Π2v) dx = 0.

Here, in the second case, BK is the bubble function defined in the previous section.
The justification of (3.2) is similar and we only need to prove that (3.7) holds. For
K ∈ T and K ⊂ Ωi\Ω0, i = 1, 2 the proof was done in the previous section. We will
focus now on the case K ∈ T , K ⊂ Ω0. From the definition of Π2 and the condition∫
K

(v − Π2v) dx = 0 we deduce that

(4.1)





α1(B1
K, x) + β1(B2

K , x) = (v1, x)
α1(B1

K, y) + β1(B2
K, y) + α2(B1

K, x) + β2(B2
K, x) = (v1, y) + (v2, x)

α1(B1
K, 1) + β1(B2

K, 1) = (v1, 1)
α2(B1

K, 1) + β2(B2
K, 1) = (v2, 1).

The system has unique solution if and only if

(4.2) detK := det

(
(B1

K, x), (B2
K, x)

(B1
K, 1), (B2

K, 1)

)
6= 0.

Let us assume that B1
K and B2

K are chosen such that (4.2) is satisfied. Then one can
solve for α and β. For example we have

(4.3) α1 =
1

detK

(
(B2

K , 1)(v1, x)− (B2
K , x)(v1, 1)

)
.

If we further assume that

(4.4) |∇Bi
K| . h−2 on K.

Then, using (A1), we get

(4.5) |Π2v|21,K = (α2
1 + α2

2)

∫

K

|∇B1
K|2 + (β2

1 + β2
2)

∫

K

|∇B2
K|2 . (|α|2 + |β|2).

On the other hand from (4.3) we have

|α1| ≤
1

|detK |
h2|v1|0,Kh.

If B1
K and B2

K are chosen such that we have

(4.6) detK & h4, for all K ∈ T , K ⊂ Ω0,

then
|α1| . h−1|v|0,K,

and similar estimates hold for α2, β1 and β2. Hence, via (4.5), we have that (3.6) holds
and consequently (3.7) is satisfied. All we have left is to prove that we can choose
B1
K and B2

K such that (4.4) and (4.6) are satisfied. One way of choosing B1
K and B2

K

is to take B1
K = BK, where BK was defined in the previous section, and then define

B2
K := BK(γK − φ), where γK is chosen such that (B2

K , 1) = 0,

γK :=

∫
k
BKφ dx∫
k
BK dx

.

�
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5. Nonoverlapping Nonmatching grids

Let Ω be split in two nonoverlapping subdomains Ω1 and Ω2 and let Γ be the interface
between Ω1 and Ω2. As in the overlapping case we assume that Ω1 and Ω2 are partitioned
by quassiuniform finite element triangulations T1 and T2 of maximal mesh sizes h1 and
h2 (h1 ≥ h2). The grid on the interface Γ does not match the two partitions. We
extend the mesh of Ω1 inside Ω2 so that the overlapping meshed region is a strip of
size d = O(h1). In this way we have reduced the setting to the case of overlapping
subdomains.(see Fig. 3).

Figure 3. Nonoverlapping grids and simple extension to overlapping.

6. Conclusions

• The method can be extended with no difficulties to the more subdomains case
or the multidimensional case.
• At the theoretical level it is simpler than the mortar method.
• If the discrete approximation spaces are spaces of continuous piecewise linear

functions then the partition of unity functions could be chosen to be piecewise
linear functions also.
• The condition (A1) is too restrictive. In practice, we can slightly change the

mesh by moving points of the mesh towards other very close points or edges.
• In the nonoverlapping case we can extend the mesh of one domain as “submesh”

of a neighboring subdomain.
• We conjecture that other classical stable pairs for subdomains. For example
P2 − P1 “subspaces” could be glued by partition of unity method in order to
construct stable pairs with good approximation properties.
• Adding more bubble functions for the overlapping regions in the velocity space

would improve the stability.
• The partition of unity method could be similarly involved for mixed finite element

methods on nonmatching grids.
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