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Abstract

A new multilevel algebraic preconditioner for symmetric positive definite matrices

is proposed. The projection and smoothing steps typical for textbook multigrids are

replaced by a special coarsening algorithm which is based on orthogonal projectors

onto kernels of subdomain matrices. The preconditioner is compared numerically with

a few other multigrid preconditioners.

1 Introduction

The main goal of this paper is to describe a new method for the solution of elliptic PDEs on
unstructured highly distorted meshes. Iterative methods based on the multilevel principle
are known to be the fastest solvers for these equations. The main idea of this principle is
to combine the local exchange of information in point-wise iterative methods and the global
propagation of information through coarse level systems with smaller number of unknowns.
The main difference between multilevel methods lies in the definition of the coarse level
unknowns and projection/interpolation operators between neighboring levels.

The results of numerical experiments reported in [2] show that the algebraic multigrid
(AMG) method by Stüben and Ruge [8, 6] results in relatively good and robust convergence
rate for a wide range of problems. The AMG is based on the concept of strongly coupled
nodes. The coarse grid nodes are selected in such a manner that as many strong coupling as
possible are taken into consideration.

The theory of the AMG method uses the assumption that the original stiffness matrix is
a symmetric positive definite M-matrix. A violation of this assumption does not necessary
make a negative impact on the convergence rate. However, our numerical experiments show
that for the case of problems with fine heterogeneous materials and highly distorted meshes,
the convergence rate of the AMG method deteriorates strongly.

In this paper we analyze numerically a new multilevel (ML) preconditioner based on
a two-level preconditioner proposed in [4]. The theory of our approach is based on the
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assumption of a lower effective material anisotropy. This assumption is satisfied in many
applications where the computational mesh is somehow adapted to the problem peculiarities.

Unlike the AMG method, the unknowns in the multilevel structure we use can not be
associated with a sequence of nested grids. Assuming that a hierarchical sequence of non-
overlapping partitions of the original mesh is given, these unknowns represent mean values
of a function over clusters of elements. From this viewpoint, our method is slightly similar
to the AMG-type methods based on the concept of smooth aggregations [10, 9]. However,
instead of the projection and smoothing steps typical for the AMG-type multigrids, we
use a special coarsening algorithm which is based on orthogonal projectors onto kernels of
subdomain matrices.

We compare numerically the ML and AMG preconditioners for the case of highly dis-
torted meshes and fine heterogeneous materials. We consider two discretization methods
based on mimetic finite differences [7] and mixed finite elements. Both discretization have
the same convergence rate [1, 11] and result in stiffness matrices with the same sparsity
structure. However, the multilevel preconditioner shows a relatively good and robust con-
vergence rate for both discretizations, unlike the AMG preconditioner, which results in a
very slow convergence for the case of finite element discretization on the Kershaw grids [3].

The paper outline is as follows. In Section 2, we describe a two-level preconditioner
and analyze its spectral properties. In Section 3, we describe the multilevel preconditioner.
Implementation details of the ML preconditioner are presented in Appendix. In Section 4,
the multilevel preconditioner is compared numerically with V and W-cycles of the AMG
method.

2 Two-level preconditioner

Let us consider a model diffusion problem:

−div(K(x)∇u) = f in Ω,

u = 0 on ∂Ω,
(1)

where Ω ∈ <2 is a polygonal domain and K(x) is a symmetric positive definite matrix for
all x ∈ Ω.

Let Ωh be a non-overlapping partition of Ω onto polygonal elements ei,

Ωh =
m
⋃

i=1

ei.

If we discretize problem (1) with the P1 finite element method, the discretized problem
can be formulated as a linear system

Au = f, A = AT > 0. (2)

In many applications, diffusion problem (1) is formulated as a system of first-order partial
differential equations which define the flux and describe the mass conservation law. In this
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case the discretized problem results in a saddle point system which can be reduced to problem
(2) by applying the standard hybridization arguments.

We assume that the matrix A can be written in an assembled form by

A =
m
∑

i=1

NiAiN T
i (3)

where Ai are the elemental matrices and Ni are the corresponding assembling matrices.
Therefore, a natural choice for a preconditioner B could be

B =
m
∑

i=1

NiBiN T
i (4)

with the elemental matrices Bi where Bi is in some sense close to Ai and kerBi = kerAi.
In order to construct the elemental matrices Bi we consider the generalized eigenvalue

problem
Aiw = λMiw (5)

where Mi is a positive definite diagonal matrix. Let Wi be the matrix of Mi-orthogonal
eigenvectors, Wi = [w

(1)
i , . . . , w

(si)
i ], where si is the size of matrix Ai. Furthermore, let Λi be

the matrix of eigenvalues:

Λi = diag{λ(1)
i , λ

(2)
i , . . . , λ

(si)
i }, λ

(1)
i ≤ λ

(2)
i ≤ . . . ≤ λ

(si)
i .

Then, the spectral decomposition of Ai is

Ai =MiWiΛiW
T
i Mi. (6)

Let ei be an interior element of partition Ωh, i.e. ∂ei ∩ ∂Ω = ∅. Then, the lowest
eigenvalue is zero, λ

(1)
i = 0, and the corresponding eigenvector is w

(1)
i =

√
σi(1, 1, . . . , 1)

T

where σi is such that [w
(1)
i ]TMiw

(1)
i = 1. Define

Bi =MiWi Λ̃iW
T
i Mi (7)

where
Λ̃i = diag{0, 1, 1, . . . , 1}.

The Mi-orthogonality of the eigenvectors implies that

Bi =MiWiW
T
i Mi −Miw

(1)
i [w

(1)
i ]T Mi =Mi −MiPiMi

where Pi = w
(1)
i [w

(1)
i ]T is the one-rank matrix,

Pi = σi









1 1 . . . 1
1 1 . . . 1
. . . . . . . . . . . .
1 1 . . . 1









.
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It is easy to check that (PiMi)
2 = PiMi, i.e. PiMi is theMi-orthogonal projector onto kernel

of both Ai and Bi. The definition of matrix Bi implies that

λ
(2)
i (Bi x, x) ≤ (Ai x, x) ≤ λ

(si)
i (Bi x, x) ∀x ∈ <si (8)

and the ratio λ
(si)
i /λ

(2)
i depends only on the element shape and tensor anisotropy. Hereafter

we assume that the effective material anisotropy is small, i.e. λ
(si)
i /λ

(2)
i is O(1). The more

restrictive assumptions are that the diffusion tensor is isotropic and constant inside each
mesh element and the mesh elements are shape-regular. In this case, the ratio λ

(si)
i /λ

(2)
i is

again O(1). In addition to that, the global preconditioner B requires a proper scaling of
lower and upper bounds in (8). It can be achieved by letting Mi be the main diagonal of Ai.

Then, λ
(2)
i = O(1) and λ

(si)
i = O(1).

Let ei be a near-boundary element, i.e. ∂ei ∩ ∂Ω 6= ∅. The Dirichlet boundary condition
implies that all eigenvalues of (5) are of the same order of magnitude. Therefore, the choice

Bi =Mi, Mi = diag{Ai},

results in inequalities similar to (8) with lower and upper bounds equal to λ
(1)
i and λ

(si)
i ,

respectively. Again we assume that λ
(si)
i /λ

(1)
i = O(1).

Lemma 1 Under the above assumptions, the matrix B is spectrally equivalent to the matrix

A, i.e.

c1(B x, x) ≤ (Ax, x) ≤ c2(B x, x) ∀x ∈ <n,

where constants c1 and c2 are independent of the mesh and jumps in the diffusion tensor.

The lemma is proved with standard arguments of the superelement analysis (see, e.g.
[5]).

A two-level preconditioner comes naturally from the analysis of the structure of the
matrix B. Let m̃ be the number of interior cells which are enumerated from 1 to m̃. Then,
definitions (4) and (7) give

B =
m
∑

i=1

NiBiN T
i =

m̃
∑

i=1

Ni(Mi −Mi PiMi)N T
i +

m−m̃
∑

i=1

NiMiN T
i

= M −
m̃
∑

i=1

NiMi PiMiN T
i ≡M − C

(9)

where M is the diagonal matrix and C is a matrix with non-negative entries. It is easy
to check that B is an M-matrix with a weak diagonal dominance. Therefore, the algebraic
multigrid, like the AMG by Stüben and Ruge [8, 6], may result in a better preconditioner if
it is based on entries of matrix B rather than on entries of matrix A. We shall address this
issue in more details in the future work.

Let us consider a system
Bv = (M − C)v = g (10)
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and define

v̂i =
[

w
(1)
i

]T

MiN T
i v and ĝi =

[

w
(1)
i

]T

MiN T
i M

−1g.

IfMi were the mass matrix for element ei, then v̂i would be the mean value of a finite element
function vh over the element, i.e.

v̂i =
1

|ei|

∫

ei

vh dx

where |ei| denotes the area of ei. In the general case, v̂i is a weighted mean value induced

by matrix Mi. Let us multiply equation (10) by [w
(1)
i ]TMiN T

i M
−1, i = 1, . . . , m̃. We get

the following system for the mean values:

(I − Q̂)v̂ = ĝ, ĝ ∈ <m̃,

where
Q̂ = {q̂ij}m̃i,j=1 and q̂ij = [w

(1)
i ]TMiN T

i M
−1NjMj w

(1)
j . (11)

Let Ŝ = I − Q̂. It is easy to show that the matrix Ŝ preserves many properties of the
matrix B. In particular, Ŝ is symmetric positive definite M-matrix. Let us assume for a
moment that entries of the matrix S−1 = Z = {zij}m̃i,j=1 are known. Then, we can write

down the explicit formula for B−1,

B−1 =M−1 +M−1

[

m̃
∑

i,j=1

zij NiMiw
(1)
i [w

(1)
j ]T Mj N T

j

]

M−1.

Theorem 1 (Two-level preconditioner) Let matrix R = {rij}mi,j=1 be spectrally equiva-

lent to the matrix Z and

B−1
R =M−1 +M−1

[

m̃
∑

i,j=1

rij NiMiw
(1)
i [w

(1)
j ]T Mj N T

j

]

M−1.

Then, matrix BR is spectrally equivalent to the matrix B.

The proof of the theorem is based on simple linear algebra and properties of spectrally
equivalent matrices. It can be found in [4]. In practice, implementation of preconditioner
BR means that instead of solving system (I − Q̂) v̂ = ĝ we compute v̂ = R ĝ.

Remark 1 Note that the number of mesh elements may be bigger than the size of the original

problem. The typical example here is the P1 finite element discretization on a triangular grid

Ωh. In this case, the triangular partition Ωh may be replaced by a coarser partition Ω̃h, for

example, by uniting triangles into quadrilaterals.
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3 Multilevel preconditioner

Let us define a hierarchical sequence of non-overlapping partitions

Ωl,h =

ml
⋃

i=1

Ωl,i, l = 1, . . . , L, (12)

where
Ω1,i = ei and Ωl,i =

⋃

j∈Sl(i)

Ωl−1,j , l > 1.

Here Sl(i) denotes a collection of indexes of subdomains from level l− 1 whose union is the
subdomain Ωl,i. We assume that subdomains Ωl,i are simply-connected.

Let us denote the two-level preconditioner introduced in Section 2 by A1, i.e. A1 = B,
and rewrite formula (9) as follows:

A1 =M −
m̃1
∑

i=1

N1,iM1,i P1,iM1,iN T
1,i, (13)

where M1,i, P1,i and N1,i are new notations for the matrices Mi, Pi and Ni, respectively.
For every partition in hierarchy (12), the original stiffness matrix A can be written in

the assembled form:

A =

ml
∑

i=1

Nl,iAl,iN T
l,i, Al,i =

∑

j∈Sl(i)

N̂l,j Al−1,j N̂ T
l,j (14)

where Al,i are the subdomain stiffness matrices and Nl,i, N̂l,i are the assembling matrices.
Similar to (14), we can rewrite matrix M in the assembled form:

M =

ml
∑

i=1

Nl,iMl,iN T
l,i, Ml,i =

∑

j∈Sl(i)

N̂l,jMl−1,j N̂ T
l,j. (15)

In the previous section we introduced the M1,i-orthogonal projectors P1,i, i = 1, . . . , m̃1.
Now, we can repeat the same speculations for every partition in hierarchy (12). Let Pl,i

be the Ml,i-orthogonal projector onto kernel of the subdomain matrix Al,i from (14), i.e.

Pl,i = w
(1)
l,i [w

(1)
l,i ]

T where w
(1)
l,i =

√
σl,i(1, 1, . . . , 1)

T represents the lowest eigenmode of Al,i. It
is obvious that Pl,i is a one-rank matrix. Let us define matrices Al, l = 2, . . . , L, as follows:

Al =M −
m̃l
∑

i=1

Nl,iMl,i Pl,iMl,iN T
l,i. (16)

At the moment, the matrices Al, l = 1, . . . , L, have the same size and rank. However,
matrices

Cl = Al −M = −
m̃l
∑

i=1

Nl,iMl,iPl,iMl,iN T
l,i, l = 1, . . . , L,
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have different ranks. The rank of the matrix Cl equals to the number of involved projectors,
i.e. rank(Cl) = m̃l. Moreover, m̃l < m̃l−1. This feature will be exploited in the multilevel
algorithm formulated below.

Let V0 ≡ <n and Vl be the images of matrices Cl, i.e. Vl = im(Cl), l = 1, . . . , L. Then,
the definition of matrix Cl implies that

Vl = {x ∈ V0 : x =

m̃l
∑

i=1

aiNi,lMl,iw
(1)
l,i , ai ∈ <1}. (17)

Since w
(1)
l,i =

√
σl,i(1, 1, . . . , 1)

T and the partitions Ωl,h are hierarchical, the spaces Vl, l =
0, . . . , L, are nested:

VL ⊂ VL−1 ⊂ . . . ⊂ V0.

Lemma 2 Let the partitions Ωl,h, l = 1, . . . , L, be quasi-uniform with the shape-regular

subdomains, i.e. diam(Ωl,i) ∼ 2l−1h. Then

c1
2l
(Alx, x) ≤ (Al−1x, x) ≤ c2(Alx, x) ∀x ∈ Vl−1, l = 1, . . . , L. (18)

where A0 ≡ A and constants c1 and c2 are independent of l and the discretization parameter

h.

The proof of the lemma is again based on the standard superelement analysis (see, e.g. [5])
and therefore is omitted here.

Let Bl+1 be a multilevel preconditioner for level l + 1. We assume that on the coarsest
level BL = AL. On the finer level l, the preconditioner Bl is given by a recursive algorithm
for computing r̃ = B−1

l r.

Algorithm 1 (Multilevel Preconditioner)

1. take a special initial guess

x0 =M−1r, r ∈ Vl−1;

2. enter the subspace Vl:

ξ0
l = Alx

0 − r = −ClM
−1r, ξ0

l ∈ Vl;

3. set y0
l = −ξ0

l and perform β Chebyshev iterations in the subspace Vl:

yil = yi−1
l − γl,iClB

−1
l+1 ξ

i−1
l ,

ξil = ξi−1
l − γl,iAlB

−1
l+1 ξ

i−1
l , i = 1, . . . , β;

4. leave the subspace Vl:
r̃ =M−1(yβl + r).
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Note that on Step 3, the preconditioner Bl+1 acts on a residual ξil ∈ Vl. This is in the
agreement with Step 1 where r ∈ Vl−1.

The Algorithm 1 fits into the standard multigrid scheme. The projection to a coarser
grid is replaced by the subspace entering (Steps 1 and 2). The interpolation to a finer
grid is replaced by the subspace leaving (Step 4). Note that Step 2 has some smoothing
properties coming from smoothing properties of matrix Cl which computes mean values
over subdomains. The Chebyshev iterations provides the best polynomial approximation to
A−1
l in subspace Vl. Indeed, Algorithm 1 results in the following implicit formula for the

preconditioner Bl:
B−1
l = (I − Tl)A

−1
l

where
Tl = (I −M−1Al)Pl,β(B

−1
l+1Al) (I −M−1Al)

and Pl,β(·) is the Chebyshev polynomial of degree β,

Pl,β(t) =

β
∏

i=1

(1− γl,it).

The Chebyshev parameters γl,i are chosen such that to minimize the spectral radius of
Pl,β(B

−1
l+1Al). By the definition of matrices M and Al, the spectral radius of I − M−1Al

is less than 1. Therefore, Lemma 2 and the minimization properties of the Chebyshev
polynomial imply that matrices Bl and Al are spectrally equivalent if β is sufficiently large.

On the other hand, the optimal arithmetical complexity of the method is achieved for
sufficiently small β. For instance, the uniform hierarchical coarsening of a square grid results
in m̃l/m̃l+1 ≈ 4. Therefore, the optimal arithmetical complexity is achieved for β ≤ 3. The
numerical study of Algorithm 1 shows that it is robust for a large number of multigrid levels.
This feature of the algorithm is still an open question.

4 Numerical experiments

In this section we compare the multilevel preconditioner with the algebraic multigrid pre-
conditioner written by J.Ruge, K.Stüben, and R.Hempel (release 1.5, 1990).

Let us consider a test problem

−div(K(x)∇u) + c u = 1 in Ω,

u = 0 on ΓD,

(K(x)∇u)n = 0 on ΓN ,

where c = 0.00225 and Ω is a unit square with boundary ∂Ω divided into two parts, ΓD and
ΓN . Let ΓD be the top side of Ω.

We consider three different diffusion tensors: K1(x) = I,

K2(x) =

{

103, when x ∈ (0; 0.5)2 ∪ (0.5; 1)2,

1, otherwise,

8



and K3(x) = K2(x)ψ(i), where ψ(i) a random function which is constant on each mesh
element ei and takes arbitrary values between 1 and 103.

We compare the ML and AMG preconditioners on a sequence of uniformly refined grids
shown in Fig. 1. The first grid is constructed from a reference square grid by the mapping

x(ξ, η) = ξ + 0.1 sin(2πη) sin(2πξ), y(ξ, η) = η + 0.1 sin(2πη) sin(2πξ).

The second one is the piece-wise smooth Kershaw grid proposed in [3]. The Kershaw grid is
more close to a grid we can expect in real applications. Different orientation of mesh lines
catches a possible difference in material properties. We consider two approaches to a problem
discretization: the mimetic finite differences (MFD) [7] and the lowest order Raviart-Thomas
mixed finite elements (MFE). Both discretizations result in saddle point problems which can
be reduced to problems with symmetric positive definite matrices by applying the standard
hybridization arguments. The unknowns are associated with mesh edges and called the
Lagrange multipliers in the finite element community. The discretizations provide the same
accuracy [1, 11]; however, the mimetic discretizations results usually in matrices with less
number of positive off-diagonal entries than the finite element discretizations.

Figure 1: Examples of smooth and Kershaw grids.

The results of numerical experiments are shown in Tables 1 and 2. The experiments have
been performed with a modified version of Algorithm 1. We performed one pre-smoothing
and one post-smoothing Gauss-Seidel iteration on level l = 1. We used three Chebyshev
iterations, i.e. β = 3.

In the tables, we present the number of PCG iterations and the total CPU time for the
methods. Note that the initialization time of the AMG method is problem dependent and
has to be included in the total solution time. The PCG iterations were stopped when the
initial Euclidean norm of the residual has been decreased by a factor of 106. The size of a
coarse grid problem was 144 in all experiments.

On smooth grids, the AMG preconditioner requires about 50% less total time than the ML
preconditioner in the case of the mimetic FD discretization. However, both preconditioners
are competitive in the case of the MFE discretization. Indeed, in this case the matrix A has
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Table 1: Arithmetical complexity of preconditioners on smooth grids.

K mimetic FD discretization mixed FE discretization

ML(3) V(1,1) W(1,1) ML(3) V(1,1) W(1,1)
1/h # time # time # time # time # time # time
12 11 0.02 8 0.01 8 0.02 14 0.02 11 0.03 8 0.02
24 14 0.09 10 0.08 9 0.12 17 0.12 12 0.12 11 0.13

K1 48 17 0.53 10 0.44 10 0.76 20 0.70 17 0.69 15 0.95
96 20 2.94 12 2.21 11 4.17 21 3.54 25 4.04 21 7.71

192 23 15.0 13 9.57 13 21.8 26 19.3 37 22.4 34 54.1
12 11 0.02 8 0.01 6 0.02 14 0.03 11 0.01 8 0.01
24 15 0.09 11 0.08 9 0.08 17 0.12 13 0.09 11 0.13

K2 48 18 0.57 12 0.49 10 0.75 21 0.73 17 0.59 15 0.97
96 22 3.18 12 2.17 12 4.33 24 3.86 26 3.70 22 7.54

192 26 16.7 16 10.9 15 23.9 29 20.3 42 22.9 35 56.7
12 11 0.03 10 0.02 9 0.02 14 0.03 8 0.02 8 0.02
24 14 0.11 11 0.08 10 0.09 16 0.12 12 0.08 11 0.13

K3 48 21 0.71 14 0.49 13 0.82 21 0.72 17 0.70 15 0.97
96 25 3.98 19 2.95 16 5.57 25 3.99 23 4.14 20 6.74

192 28 20.5 22 14.1 20 32.1 29 20.3 25 23.1 23 40.1

more positive off-diagonal entries but the good spectral properties of the AMG preconditioner
are guaranteed only for M-matrices.

On the Kershaw grids, the AMG preconditioner is more than twice better than our
preconditioner in the case of the MFD discretization. In the case of the MFE discretization,
the comparison is in favor of the ML preconditioner. The replacement of V-cycle by W-cycle
improves the convergence rate but drastically increases the total computational time.

5 Conclusion

We compared numerically the ML and AMG preconditioners. The ML preconditioner re-
sulted in relatively good and robust convergence rate for all test problems, specially problems
on highly disturbed meshes. It is pertinent to note that the geometric nature of the ML
preconditioner is transparent for its parallel implementation.
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Appendix

In this section we describe an efficient implementation of Algorithm 1. Let Ql ≡ <m̃l and
Kl : Vl → Ql be a bijective mapping between spaces Ql and Vl. We shall use small letters for
vectors in the space Vl (e.g., ξ, r, z, etc) and calligraphic capital letters for their counterparts
in the space Ql (resp., E , R, Z, etc). Then, the characterization property (17) implies:

zl = K−1
l (Zl) =

m̃l
∑

i=1

Zl,iNl,iMl,iw
(1)
l,i

where Zl,i is the i-th component of Zl ∈ Ql. The first two steps in Algorithm 1 are imple-
mented simultaneously. Let E0

l = Kl(ξ
0
l ) ∈ Q0 be the counterpart of ξ0

l . We have to consider
two separate cases: l = 1 and l > 1. Let l = 1, i.e. r ∈ V0. Then

ξ0
1 = −

m̃1
∑

i=1

N1,iM1,iP1,iM1,iN T
1,iM

−1r =

m̃l
∑

i=1

N1,iM1,iw
(1)
1,i E0

1,i

where
E0

1,i = −[w(1)
1,i ]

TM1,iN T
1,iM

−1r. (19)

This step requires O(m̃1) arithmetical operations. Let l > 1, i.e. r ∈ Vl−1. The vector r is
numerically represented by a vector Rl−1 ∈ Ql−1,

r =

m̃l−1
∑

i=1

Nl−1,iMl−1,iw
(1)
l−1,iRl−1,i.

Note that we can not use the straightforward approach as in (19) to compute the residual
E0
l because it is too expensive. Instead of that, we use the vector Rl−1:

E0
l,i = −[w(1)

l,i ]
TMl,iN T

l,iM
−1

m̃l−1
∑

j=1

Nl−1,jMl−1,jw
(1)
l−1,jRl−1,j

= −[w(1)
l,i ]

T
∑

k∈Sl(i)

N̂l−1,kMl−1,kN T
l−1,kM

−1

m̃l−1
∑

j=1

Nl−1,jMl−1,jw
(1)
l−1,jRl−1,j.

12



Suppose that we have a recursive procedure for computing coefficients

Υl−1
kl = [w

(1)
l−1,k]

TMl−1,kN T
l−1,kM

−1Nl−1,jMl−1,jw
(1)
l−1,j . (20)

Then

E0
l,i =

∑

k∈Sl(i)

∑

j∈Ol−1(k)

√

σl,i
σl−1,k

Υl−1
kj Rl−1,j

where Ol−1(k) denotes a collection of indexes of the subdomains adjacent to subdomain
Ωl−1,k including the subdomain itself. The arithmetical complexity of computing E 0

l is O(m̃l).
Efficient algorithms for recursive computing coefficients σl,i and Υl

kj are discussed at the end
of this section.

The third step in Algorithm 1 is implemented in the space Ql. Since y0
l ∈ Vl and Vl is

the image of matrix Cl, we have yil ∈ Vl. From the last step in Algorithm 1, we derive that
MBl+1ξ

i−1
l ∈ Vl. Since Al =M −Cl, all the residuals ξi−1

l , i = 0, . . . , β, belong to Vl. Using
the bijective mapping Kl, we define

Z i
l = Kl(ClBl+1ξ

i
l ) and Gil = Kl(MBl+1ξ

i
l ).

Then, the third step in Algorithm 1 can be rewritten as follows:

Y i
l = Y i−1

l − γiZ i−1
l ,

E il = E i−1
l − γi(Gi−1

l −Z i−1
l )

(21)

where Y i
l = K(yil). The arithmetical complexity of (21) is O(m̃l).

The last step in Algorithm 1 is implemented such that to provide vectors Z i−1
l and Gi−1

l

which are used in formula (21). We have to consider two separate cases: l = 1 and l > 1.
Let l = 1, i.e. r ∈ V0. Then

r̃ =M−1

(

m̃1
∑

i=1

N1,iM1,iw
(1)
1,iYβ

1,i + r

)

.

The arithmetical complexity of this step is O(m̃1). Let l > 1, i.e. r ∈ Vl−1. Then, we have
to compute vectors

Zl−1 = Kl−1(Cl−1M
−1(yβl + r)) and Gl−1 = Kl−1(y

β
l + r).

Let gl−1 = K−1
l−1(Gl−1) and zl−1 = K−1

l−1(Zl−1). Then

gl−1 =

m̃l−1
∑

i=1

Nl−1,iMl−1,iw
(1)
l−1,iRl−1,i +

m̃l
∑

i=1

Nl,iMl,iw
(1)
l,i Yβ

l,i

=

m̃l−1
∑

i=1

Nl−1,iMl−1,iw
(1)
l−1,iRl−1,i +

m̃l
∑

i=1

Nl,i





∑

j∈Sl(i)

N̂l−1,jMl−1,jN̂ T
l−1,j



w
(1)
l,i Yβ

l,i

=

m̃l−1
∑

i=1

Nl−1,iMl−1,iw
(1)
l−1,iRl−1,i +

m̃l−1
∑

i=1

Nl−1,iMl−1,iw
(1)
l−1,i

√

σl,j
σl−1,i

Yβ
l,j.
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The definition of the bijective mapping Kl−1 gives

Gl−1,i = Rl−1,i +

√

σl,j
σl−1,i

Yβ
l,j.

The computation of Zl−1 is associated with a matrix-vector multiplication. Indeed,

zl−1 = Cl−1M
−1gl−1

=

m̃l−1
∑

i=1

Nl−1,iMl−1,iPl−1,iMl−1,iN T
l−1,iM

−1

m̃l−1
∑

j=1

Nl−1,jMl−1,jw
(1)
l−1,jGl−1,j

and
Zl−1,i =

∑

j∈Ol−1(i)

Υl−1
ij Gl−1,j .

The arithmetical complexity of computing Gl−1 and Zl−1 is O(m̃l−1).
Let us consider the recursive algorithms for computing coefficients Υl

ij and σl,i. We recall

that w
(1)
l,i =

√
σl,iεl where εl = (1, . . . , 1)T and [w

(1)
l,i ]

TMl,iw
(1)
l,i = 1. Then, formula (15) leads

to the following recursion:

σl,i =
1

εTl Ml,iεl
=

1

εTl





∑

j∈Sl(i)

N̂l−1,jMl−1,jN̂ T
l−1,j



 εl

=
1

∑

j∈Sl(i)

1

σl−1,j

. (22)

The coefficients Υ1
ij are computed with O(m̃1) arithmetical operations. Combining for-

mulas (15) and (20) we get the following recursive procedure:

Υl
kj = [w

(1)
l,k ]

TMl,kN T
l,kM

−1Nl,jMl,jw
(1)
l,j

= [w
(1)
l,k ]

T





∑

r∈Sl(k)

N̂l−1,rMl−1,rN̂ T
l−1,r



N T
l,kM

−1Nl,j





∑

t∈Sl(j)

N̂l−1,tMl−1,tN̂ T
l−1,t



w
(1)
l,j

=





∑

r∈Sl(k)

√

σl,k
σl−1,r

[w
(1)
l−1,r]

TMl−1,rN T
l−1,r



M−1





∑

t∈Sl(j)

√

σl,j
σl−1,t

Nl−1,tMl−1,tw
(1)
l−1,t





=
∑

r∈Sl(k)

∑

t∈Sl(j)

√

σl,k
σl−1,r

σl,j
σl−1,t

Υl−1
rt . (23)

The arithmetical complexity of algorithms (22) and (23) is O(
∑L

l=1 m̃l). Assuming that the
numbers m̃1, . . . , m̃L form a decreasing geometric series, we get the upper bound O(m̃1) for
the arithmetical complexity.

Finally, formula (11) implies that coefficient ΥL
ij are all what is needed for deriving the

coarse grid problem.
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