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Smoothed Error on fine grid

MultigridMultigridMultigridMultigrid cycle cycle cycle cycle
for for for for elliptic elliptic elliptic elliptic problemsproblemsproblemsproblems

Initial Error on fine grid

Relax

Smoothed Error on coarse grid

CG Tran
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r

Error must be reduced by
• relaxation
• coarse–grid correction
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Smooth Smooth Smooth Smooth errorerrorerrorerror

Initial Error Smoothed Error

Relax

uxx + uyy = f

So, relaxation (Jacobi or Gauss-Siedel) produced
geometrically smooth error for the PDE:



Chartier-5

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.02

0.04

0.06

0.08

0.1

xy

Algebraically smooth Algebraically smooth Algebraically smooth Algebraically smooth errorerrorerrorerror

Consider uxx + (0.001) uyy = f.   Then 50 sweeps of Gauss-Seidel
produce the following error:
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Another look at what it means to be smooth can be seen in the
following observation:

Algebraically smooth Algebraically smooth Algebraically smooth Algebraically smooth errorerrorerrorerror

Algebraically smooth error is not always geometrically smooth.  Automatically
choosing appropriate interpolation weights is a goal of algebraic methods.
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AlgebraicallyAlgebraicallyAlgebraicallyAlgebraically smooth smooth smooth smooth error error error error
Assume standard relaxation methods, such as Richardson.
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Eigenvectors associated with small eigenvalues of A must
be approx. by coarse–grid correction
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PA, b

Adaptive Adaptive Adaptive Adaptive MGMGMGMG

SETUP
PHASE

• Since relaxation is fixed, the goal of adaptive MG schemes
is to choose an effective interpolation matrix P (R = PT).

analyze P to inform new

setup cycle, if needed

• If P appears ineffective, design an algebraic algorithm to
improve prolongation.
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Improving Improving Improving Improving ineffectiveineffectiveineffectiveineffective interpolation interpolation interpolation interpolation

• If P is not effective, then interpolation is not
approximating low mode(s).

• As indicated by the earlier mathematics,
the method produces a error that is not
captured by the method—a linear
combination of the “missed” modes.

• Can the method self-improve interpolation?
• Without doing a spectral decomposition, can

we determine the “missed” modes?
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SubcyclingSubcyclingSubcyclingSubcycling on  on  on  on complementarycomplementarycomplementarycomplementary grids grids grids grids
The subcycling takes the following form:

1A

(1,1)
3A

(1) (1,1) (1,1)
2 2 2 32.  Relax 0 with all-ones initial guess.  Use relaxed vector to form  (and ).A v P A=

(1)
2A

(1) (1)
1 1 1 21.  Relax 0 with random initial guess.  Use relaxed vector to form  (and  ).A v P A=

----- Base cycle complete -----

(1,2)
3A

(1)
2 2

(1,2) (1,2)
2 3

3.  Test 0 (using random guess).  If conv. slow (as in this e.g.), use relaxed 

     vector to form  (and ).

A v

P A

=

(2)
2A

(2,1)
3A

. . .
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SubcyclingSubcyclingSubcyclingSubcycling on  on  on  on complementarycomplementarycomplementarycomplementary grids grids grids grids

A cheaper variant of this scheme would take the form:

1A

(3)
2A

(2,1)
3A

(2)
2A

(2,1)
3A

(1)
2A

(1,1)
3A

• This defines a general cycling (specifically
subcycling).

• How is prolongation formed?
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Let A be a partition of the space into agglomerates τ.

τ1
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Idea: Idea: Idea: Idea:  Use
representative vectors
from adaptive scheme.
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Forming the Forming the Forming the Forming the globalglobalglobalglobal P P P P

What about p Œ ∂τ ?

τ1 τ2p

A conflict arises for the value of p between the 2
agglomerates

Let p be the average of  the formulas
determined in each of its agglomerates.

No, I know the
value of p!

I know the
value of p!
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• Let xτ be the restriction of x to agglomerate τ.
• For each dof i in τ that lies on the boundary of ni > 1

agglomerates, let the ith component of xτ denoted

Forming the Forming the Forming the Forming the globalglobalglobalglobal P P P P
Assume x is a global smooth vector.
For each τ ∈ A, form an intra-agglomerate interpolation vector
pτ as follows:

 equal /i i ix x nτ τ

• Form pτ by extending xτ with zeros outside of τ.

The columns of the global interpolation operator P are the
vectors pτ for all τ ∈ A.
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The following numerical experiments utilize the less
costly subcycling scheme.

Numerical Numerical Numerical Numerical resultsresultsresultsresults

1A

(3)
2A

(2,1)
3A

(2)
2A

(2,1)
3A

(1)
2A

(1,1)
3A

All problems will have Dirichlet boundary and utilize
4 x 4 agglomerates
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34 x 34 Poisson problem square elements

k  Conv. Subcycles Grid  
Complexity 

Operator 
Complexity 

2 0.20 2 1.12 1.10 
3 0.20 2 1.15 1.12 
4 0.17 2 1.15 1.13 

Numerical Numerical Numerical Numerical resultsresultsresultsresults

34 x 34 Poisson problem rectangle elements (5:1)

k  Conv. Subcycles Grid  
Complexity 

Operator 
Complexity 

2 0.22 6 1.35 1.31 
3 0.27 6 1.44 1.37 
4 0.25 7 1.54 1.45 

Note: Note: Note: Note:  Same result if fine level linear equation is diagonally scaled.
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34 x 34 rotated anisotropic diffusion; square elements, θ = 0º

k  Conv. Subcycles Grid  
Complexity 

Operator 
Complexity 

2 0.24 10 1.59 1.51 
3 0.24 11 1.81 1.68 
4 * * * * 

Numerical Numerical Numerical Numerical resultsresultsresultsresults

34 x 34 rotated anisotropic diffusion; square elements, θ = 30º

k  Conv. Subcycles Grid  
Complexity 

Operator 
Complexity 

2 0.22 7 1.41 1.36 
3 0.24 7 1.51 1.43 
4 0.21 8 1.62 1.51 

34 x 34 rotated anisotropic diffusion; square elements, θ = 45º

k  Conv. Subcycles Grid  
Complexity 

Operator 
Complexity 

2 0.21 8 1.47 1.41 
3 0.21 8 1.59 1.50 
4 0.26 7 1.51 1.43 
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Adaptive MGAdaptive MG

• Continue multilevel testing on problems such as linear elasticity

Current and future work includes:

CurrentCurrentCurrentCurrent work work work work

• Compare efficiency with other adaptive methods

• Consider more costly subcycling scheme

• Combining information from each level


