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Multigrid cycle

for elliptic problems

Relax

Smoothed Error on fine grid

Error must be reduced by
 relaxation
 coarse—grid correction
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Smooth error

So, relaxation (Jacobi or Gauss-Siedel) produced
geometrically smooth error for the PDE:

Usx T uy :f

Relax

Initial Error Smoothed Error -W-
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Algebraically smooth error

Consider u,, +(0.001) u,,=f. Then 50 sweeps of Gauss-Seidel
produce the following error:
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Algebraically smooth error

Another look at what it means to be smooth can be seen in the
following observation: M\N |
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Algebraically smooth error is not always geometrically smooth. Automatically
choosing appropriate interpolation weights is a goal of algebraic methods.  "B&T
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Algebraically smooth error

Assume standard relaxation methods, such as Richardson.

)
= [——4
R RCE ( z }

If Ae, = e, then e, =(1—w%}0

I[fA<< A =e =e,
A=A = factor=1-w

Eigenvectors associated with small eigenvalues of 4 must
be approx. by coarse—grid correction
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Adaptive MG

analyze P to inform new

setup cycle, if needed

 Since relaxation 1s fixed, the goal of adaptive MG schemes
is to choose an effective interpolation matrix P (R = P7).

« If P appears ineffective, design an algebraic algorithm to
improve prolongation. YiT
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Improving ineffective interpolation

« If P is not effective, then interpolation 1s not
approximating low mode(s).
 (Can the method self-improve interpolation?

« Without doing a spectral decomposition, can

we determine the “missed” modes?
« As indicated by the earlier mathematics,

the method produces a error that 1s not
captured by the method—a linear
combination of the “missed” modes.
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Subcycling on complementary grids

The subcycling takes the following form:

1. Relax 4, v, =0 with random initial guess. Use relaxed vector to form B (and 4").

2. Relax A{"v, =0 with all-ones initial guess. Use relaxed vector to form 2" (and A{"").
----- Base cycle complete -----
3. Test A"v, =0 (using random guess). If conv. slow (as in this e.g.), use relaxed
vector to form P,* (and 4{"*).
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Subcycling on complementary grids

A cheaper variant of this scheme would take the form:

« This defines a general cycling (specifically
subcycling).
« How i1s prolongation formed?
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Spectral AMGe

Let A be a partition of the space into agglomerates 7.

T, Ty
Ts T
T, T,
| ] Idea: Use
— representative vectors
v, from adaptive scheme.
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Forming the global P

What about p € 01 ?

T

104

T,

A conflict arises for the value of p between the 2

agglomerates

Let p be the average of the formulas
determined in each of its agglomerates.

I know the
value of p!

No, I know the
value of p!
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Forming the global P

Assume x 1s a global smooth vector.
For each T € #, form an intra-agglomerate interpolation vector

p. as follows:

e Let x" be the restriction of x to agglomerate 7.
* For each dof i in 7 that lies on the boundary of n, > 1
agglomerates, let the i'" component of x* denoted

T T
x; equalx; /n,

* Form p, by extending x* with zeros outside of .

The columns of the global interpolation operator P are the
vectors p_ for all T e A
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Numerical reculte

The following numerical experiments utilize the less
costly subcycling scheme.

All problems will have Dirichlet boundary and utilize
4 X 4 agglomerates
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Numerical reculte

34 x 34 Poisson problem square elements

k Conyv. Subcycles Grid Operator
Complexity Complexity

2 0.20 2 1.12 1.10

3 0.20 2 1.15 1.12

4 0.17 2 1.15 1.13

34 x 34 Poisson problem rectangle elements (5:1)

k Conyv. Subcycles Grid Operator
Complexity Complexity

2 0.22 6 1.35 1.31

3 0.27 6 1.44 1.37

4 0.25 7 1.54 1.45

Note: Samec result if fine level linear equation is diagonally scaled.
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Numerical reculte

34 x 34 rotated anisotropic diffusion; square elements, 6 = 0°

k Conyv. Subcycles Grid Operator
Complexity Complexity

2 0.24 10 1.59 1.51

3 0.24 11 1.81 1.68

4 * * % %

34 x 34 rotated anisotropic diffusion; square elements, 6 = 30°

k Conyv. Subcycles Grid Operator
Complexity Complexity

2 0.22 7 1.41 1.36

3 0.24 7 1.51 1.43

4 0.21 8 1.62 1.51

34 x 34 rotated anisotropic diffusion; square elements, 0 = 45°

k Conyv. Subcycles Grid Operator
Complexity Complexity
2 0.21 8 1.47 1.41
3 0.21 8 1.59 1.50
4 0.26 7 1.51 1.43 W
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Current work

Current and future work includes:

Continue multilevel testing on problems such as linear elasticity

Compare efficiency with other adaptive methods

Consider more costly subcycling scheme

Combining information from each level _Adap’rlve
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