Adaptive multigrid via subcycling on complementary grids

Tim Chartier Department of Mathematics

chartier@math.washington.edu

- This work was funded under a Research and Development grant at Lawrence Livermore National Lab.
- Primarily collaboration with Edmond Chow
- Thanks also extended to the following:
 - Steve McCormick
 - John Ruge
 - Tom Manteuffel
 - Marian Brezina
 - Rob Falgout

Multigrid cycle

for elliptic problems

coarse—grid correction

Smoothed Error on coarse grid

Smooth error

So, relaxation (Jacobi or Gauss-Siedel) produced geometrically smooth error for the PDE:

$$u_{xx} + u_{yy} = f$$

Initial Error

Smoothed Error

Algebraically smooth error

Consider $u_{xx} + (0.001) u_{yy} = f$. Then 50 sweeps of Gauss-Seidel produce the following error:

Algebraically smooth error

Another look at what it means to be smooth can be seen in the following observation:

Algebraically smooth error is not always geometrically smooth. Automatically choosing appropriate interpolation weights is a goal of algebraic methods.

Algebraically smooth error

Assume standard relaxation methods, such as Richardson.

$$\mathbf{u}_{1} = \mathbf{u}_{0} + \frac{\omega}{\|A\|_{2}} \mathbf{r}_{0} \Rightarrow \mathbf{e}_{1} = \left(I - \frac{\omega}{\lambda_{n}} A\right) \mathbf{e}_{0}$$
If $A\mathbf{e}_{0} = \lambda \mathbf{e}_{0}$, then $\mathbf{e}_{1} = \left(1 - \omega \frac{\lambda}{\lambda_{n}}\right) \mathbf{e}_{0}$
If $\lambda << \lambda_{n} \Rightarrow \mathbf{e}_{1} \approx \mathbf{e}_{0}$

$$\lambda \approx \lambda_{n} \Rightarrow \text{factor} \approx 1 - \omega$$

Eigenvectors associated with small eigenvalues of A must be approx. by coarse—grid correction

Adaptive MG

setup cycle, if needed

- Since relaxation is fixed, the goal of adaptive MG schemes is to choose an effective interpolation matrix $P(R = P^T)$.
- If *P* appears ineffective, design an algebraic algorithm to improve prolongation.

Improving ineffective interpolation

• If *P* is not effective, then interpolation is not approximating low mode(s).

• Can the method **self-improve** interpolation?

• Without doing a spectral decomposition, can we determine the "missed" modes?

• As indicated by the earlier mathematics, the method produces a error that is not captured by the method—a linear combination of the "missed" modes.

Subcycling on complementary grids

The subcycling takes the following form:

- 1. Relax $A_1 v_1 = 0$ with random initial guess. Use relaxed vector to form $P_1^{(1)}$ (and $A_2^{(1)}$).
- 2. Relax $A_2^{(1)}v_2 = 0$ with all-ones initial guess. Use relaxed vector to form $P_2^{(1,1)}$ (and $A_3^{(1,1)}$).

 ----- Base cycle complete -----
- 3. Test $A_2^{(1)}v_2 = 0$ (using random guess). If conv. slow (as in this e.g.), use relaxed vector to form $P_2^{(1,2)}$ (and $A_3^{(1,2)}$).

Subcycling on complementary grids

A cheaper variant of this scheme would take the form:

- This defines a general cycling (specifically subcycling).
- How is prolongation formed?

Spectral AMGe

Let \mathcal{A} be a partition of the space into agglomerates τ .

$$P_{\tau_1} = \begin{bmatrix} | & | & | \\ | v_1 & v_2 & \cdots & v_{m_{\tau}} \\ | & | & | \end{bmatrix}$$

Idea: Use representative vectors from adaptive scheme.

Forming the global P

What about $p \in \partial \tau$?

A **conflict** arises for the value of *p* between the 2 agglomerates

Let *p* be the average of the formulas determined in each of its agglomerates.

Forming the global P

Assume *x* is a global smooth vector.

For each $\tau \in \mathcal{A}$, form an intra-agglomerate interpolation vector p_{τ} as follows:

- Let x^{τ} be the restriction of x to agglomerate τ .
- For each dof i in τ that lies on the boundary of $n_i > 1$ agglomerates, let the ith component of x^{τ} denoted x_i^{τ} equal x_i^{τ} / n_i
- Form p_{τ} by extending x^{τ} with zeros outside of τ .

The columns of the global interpolation operator P are the vectors p_{τ} for all $\tau \in \mathcal{A}$.

Numerical results

The following numerical experiments utilize the less costly subcycling scheme.

All problems will have Dirichlet boundary and utilize 4 x 4 agglomerates

Numerical results

34 x 34 Poisson problem square elements

k	Conv.	Subcycles	Grid	Operator
			Complexity	Complexity
2	0.20	2	1.12	1.10
3	0.20	2	1.15	1.12
4	0.17	2	1.15	1.13

34 x 34 Poisson problem rectangle elements (5:1)

k	Conv.	Subcycles	Grid	Operator
			Complexity	Complexity
2	0.22	6	1.35	1.31
3	0.27	6	1.44	1.37
4	0.25	7	1.54	1.45

Note: Same result if fine level linear equation is diagonally scaled.

Numerical results

34 x 34 rotated anisotropic diffusion; square elements, $\theta = 0^{\circ}$

k	Conv.	Subcycles	Grid	Operator
			Complexity	Complexity
2	0.24	10	1.59	1.51
3	0.24	11	1.81	1.68
4	*	*	*	*

34 x 34 rotated anisotropic diffusion; square elements, $\theta = 30^{\circ}$

k	Conv.	Subcycles	Grid	Operator
			Complexity	Complexity
2	0.22	7	1.41	1.36
3	0.24	7	1.51	1.43
4	0.21	8	1.62	1.51

34 x 34 rotated anisotropic diffusion; square elements, $\theta = 45^{\circ}$

k	Conv.	Subcycles	Grid	Operator
			Complexity	Complexity
2	0.21	8	1.47	1.41
3	0.21	8	1.59	1.50
4	0.26	7	1.51	1.43

Current work

Current and future work includes:

- Continue multilevel testing on problems such as linear elasticity
- Compare efficiency with other adaptive methods
- Consider more costly subcycling scheme
- Combining information from each level

