Send mail to:             for the digests or bakeoff
         for comments or help
Anonymous ftp repository: (
Current editor:  Craig Douglas

WWW Sites: or

Today's editor:  Craig Douglas (

Volume 12, Number 9 (approximately September 30, 2002)

Today's topics:

     Changes at
     Some Help Needed
     Research Position in Computational Physics
     EMG 2002: Preliminary Programme
     Eleventh Copper Mountain Conference on Multigrid Methods
     Some of the new entries in the bibliography


Date: Sat, 28 Sep 2002 10:22:21 -0400
From: Craig Douglas 
Subject: Changes at

Due to a rash of problems on the MGNet server recently, the hardware is going
to be replaced sometime in the next few days.  During the switchover, the
machine will be offline for hopefully only a few minutes.

The new machine has very few network functions enabled.  Only http will be
supported normally.  If you are one of the few anonymous ftp users left,
please switch to accessing MGNet using a browser.  If you are mirroring MGNet
using anonymous ftp, please switch to something like w3mir.

There has been an on again, off again parallel denial of service attack on the
machine for the last few days.  This may also cause inconvenience to you.


Date: Wed, 25 Sep 2002 00:06:51 +0400
From: "David Aatum" 
Subject: Some Help Needed

Sorry about disturbing you.  I'm programming the driven cavity flow (with the
standar boundary conditions) using multigrid; I read pressure must be
extrapolated but I do not know how and where?  Can you give me a clue?  I also
doubt if no treating the system as singular would drive me to a particular
solution; is it that way or I have to handle global constraints so as to
assure compatibility?


Date: Wed, 25 Sep 2002 10:52:19 -0500
From: Tomasz Plewa 
Subject: Research Position in Computational Physics

The ASCI/Alliances Center for Astrophysical Thermonuclear Flashes at
the University of Chicago invites applications for a research position
in computational physics. The Center's purpose is to develop and apply
a general-purpose multi-physics adaptive mesh refinement code,
FLASH. The primary applications of the FLASH code are simulations of
astrophysical thermonuclear explosions.

The successful applicant will develop physics models needed for these
simulations, design and implement appropriate numerical algorithms and
validate the models against experimental results. Experience in
computational physics and parallel computing is required. Interest in
astrophysical applications, implicit solution techniques, and fluid
dynamics or radiation transport is highly desirable.

The position is for a period of two years with the possibility of

To apply, please submit to the address listed below a curriculum
vitae, a list of publications, a brief description of research
interests and the names and contact information for three
references. Applications received prior to 1 December 2002 will
receive first consideration. Women and minorities are strongly
encouraged to apply. AAE/EOE.

All applications, specifying the desired position, should be sent to:

Postdoctoral Research Position
ASCI Flash Center
Attn: Carrie Eder
5640 S. Ellis Ave., RI 468
Chicago, IL 60637


Date: Mon, 23 Sep 2002 13:54:43 +0200
From: Jochen Hittler 
Subject: EMG 2002: Preliminary Programme

Preliminary Programm EMG 2002

                                 Sunday, Oct. 6, 2002

19.00 INFORMAL GET-TOGETHER Hohenwart Conference Center

                                 Monday, Oct. 7, 2002

09.00 Jianchao Xu Algebraic Multigrid methods using energy-minimising basis
10.00 Robert Falgout Adaptive Algebraic Multigrid
11.20 Ralf Hiptmair Multigrid for Edge Elements:  A survey

                          Session 1:    Special Multigrid 1

14.00 Gerhard Starke
        Multilevel Conjugate Gradient Methods for Nonlinear Least-Squares
        Finite Element Computations
14.30 Michael Pernice
        Newton-Krylov-FAC Methods for Problems Discretized on Locally Refined
15.00 Gheorghe Juncu
        Numerical experiments with MG in Bifurcation Points Computation
15.30 Jan Van lent
        Multigrid for High Order Time Discretisation of Parabolic Equations

                          Session 2:    Algebraic Multigrid

14.00 Panayot Vassilevski  
        Algebraic Construktion of Mortar Multiplier Spaces with Application to
        Parallel Coarsing
14.30 Vladimir V. Shaidurov
        Algebraic Multigrid for Convection-Diffusoin Equation
15.00 Markus Wabro
        Coupled Algebraic Multigrid Methods for the Oseen Problem
15.30 Alfio Borzi
        An efficient algebraic multigrid method for solving optimality systems

                                  Session 3: Analyis

16.30 Dietrich Braess
        A Cascadic Multigrid Method for Mortar Elements
17.00 Christian Wieners
        Local Multigrid Analysis
17.30 Boris Khoromskij
        Fast Solvers in Control Theory within H-Matrix Arithmetic

                             Session 4: Special Multigrid

16.30 Nadine Frauboese
        Robust Multi-Grid Method for PDEs on complicated domains
17.00 Michael Bader
        Convection Problems and Total Semicoarsing
17.30 Markus Mohr
        Cell-Centered Multigrid Revisited
18.00 Andreas Gantner
        Multilevel Additive Schwarz Preconditioner For Nonconforming Mortar
        Finite Element Methods

                                Tuesday, Oct. 8, 2002

09.00 Klaus Johannsen
        Multigrid Methods for Bifurcation Analysis of Flow in Saturated Porous
10.00 Robert Stevenson
        Adaptive Wavelet Methods for Solving Operator Equations
11.20 Walter Zuhlehner
        On the Analysis of Multigrid Methods for Mixed Variational Problems

                             Session 5: Special Multigrid

14.00 Ralf Kornhuber
        On the Fast Solution of Phase Field Models
14.30 Lars Grasedyck
        A multigrid method to solve large scale Sylvester equations
15.00 Klaus Neymeyer
        A hierarchy of preconditioned eigensolvers
15.30 Guiseppe Borzi
        Algebraic multigrid methods for solving eigenvalue problems

                                    Session 6: CFD

14.00 Arnold Reusken
        Grad-div stabilisation for Stokes equations
14.30 Achim Gordner
        Multigrid in low machnumber flow simulations
15.00 Sandra Naegele
        Application of a Multigrid Solver for the Incompressible Navier-Stokes
        Equations in Laminar and Turbulent Regimes
15.30 Gunar Matthies
        Analysis and Performance of Multiple Discretisation Multilevel Methods

                               Session 7: Applications

16.30 Craig Douglas
        Fast Preconditioners for Computation of Sea Surface Heights in Complex
17.00 Oliver Sterz
        Application of Multigrid in Power Engineering Value Problems for
        Pricing American Options
18.00 Torsten Fischer
        Fast Numerical Methods for The Simulation of Disperse Systems
18.30 Heiko Briesen
        The solution of refinery process problems by means of a multigrid
        method based on an adaptive Wavelet-Galerkin discretization

                       Session 8: Frameworks and Imageprocessing

16.30 Nicolas Neuss
        FEMLISP - An Interactive Multigrid Environment
17.00 F.J.  Gaspar
        A Multigrid Toolbox for MatLAB
17.30 Frank Huelsemann
        Hierarchical hybrid grids - a grid framework for high performance
18.00 Athanasios Panagakis
        Workload Prediction of Rendering Algorithms in GRID Computing
18.30 Stefan Henn
        Nonlinear Multigrid Methods For Total Variation Image Denoising

                               Wednesday, Oct. 9, 2002

09.00 Volker Schulz
        Multigrid approaches to PDE-model based optimization problems
10.00 Cees Oosterlee
11.20 Stefan Lang
        Parallel, Adaptive and Scalable Simulation based on Multigrid Methods

                                Thursday, Oct 10, 2002

09.00 Steffen Boerm
        H2 - Matrices
10.00 Stefan Sauter
        Lattice Equations
11.20 Sabine Attinger
        Picking the Right Length Scales First - When Global Homogenization
        Procedures Fail


    Editor's Note: See


Date: Thu, 12 Sep 2002 17:21:38 -0700
From: Van Emden Henson 
Subject: Eleventh Copper Mountain Conference on Multigrid Methods


   Eleventh Copper Mountain Conference on Multigrid Methods
   March 30 - April 4, 2003
   Copper Mountain, Colorado, USA


   The Center for Applied Scientific Computing, Lawrence Livermore Nat'l Lab
   Los Alamos National Laboratory
   Front Range Scientific Computations, Inc.
   The University of Colorado
   The Society for Industrial and Applied Mathematics




   General scalable multigrid and multilevel techniques, algebraic & 
   Parallel implementation of multigrid.  Applications of these methods.
   Every effort will be made to encourage contributions from anyone whose
   interest lies in these important and rapidly evolving fields.


   STUDENT PAPER COMPETITION. Travel and lodging assistance will be awarded to
   students and new PhDs judged to have submitted the best research papers.

   MULTIGRID TUTORIAL. We will offer an updated tutorial on basic multigrid
   and advanced multilevel techniques, including algebraic multigrid (AMG),
   nonlinear problems, variable mesh spacings, variable coefficient operators,
   and other common complicating situations.


   Student Papers          Jan. 13, 2003
   Author Abstracts        Feb.  3, 2003
   Early Registration      Feb.  3, 2003
   Guaranteed Lodging      Feb. 27, 2003


Please access our web site at

or contact

   Cathy Lee
   1390 Claremont Drive
   Boulder, CO 80303
   (303) 554-1232

Van Emden Henson
Group Leader, Numerical Methods Group
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
(925) 423-4283
(925) 422-6287 (fax)


Date: Sat, 28 Sep 2002 14:42:12 +0500
From: Craig Douglas 
Subject: Some of the new entries in the bibliography

Below are some of the new entries.  The latest version is dated September 28,
2002, has 3691 entries, and is 165 pages long.  As usual, please send
additions and corrections.

    Editor's Note: See


  [1] P. Amodio, R. W. W. J. R. Cas and, G. Rousso and, G. Fair-
           weather,  I. Gladwell,  G. L. Kraut,  and M. Paprzycki,
           Almost block diagonal linear systems:  sequential and parallel
           solution techniques, and applications, Numer. Lin. Alg. Appl.,
           7 (2000), pp. 275-317.
  [2] O. Axelsson and I. Kaporin, Error norm estimation and stopping
           criteria in preconditioned conjugate gradient iterations, Numer.
           Lin. Alg. Appl., 8 (2001), pp. 265-286.
  [3] S. B. Baden, Structured Adaptive Mesh Refinement (Samr) Grid
           Methods, vol. 117 of Ima Volumes in Mathematics and Its Ap-
           plications, Springer- Verlag, New York, 1999.
  [4] A.  Basermann,  Parallel  block  ILUT/ILDLT  preconditioning  for
           sparse eigenproblems and sparse linear systems, Numer. Lin.
           Alg. Appl., 7 (2000), pp. 635-648.
  [5] F. B. Belgacem and S. C. Brenner, Some nonstandard finite ele-
           ment estimates with applications to 3D Poisson and Signorini
           problems, Elect. Trans. Numer. Anal., 12 (2001), pp. 134-148.
  [6] P.  Benner,  R.  Byers,  H.  Fassbender,  V.  Mehrmann,  and
           D.  Watkins,  Cholesky-like  factorizations  of  skew-symmetric
           matrices, Elect. Trans. Numer. Anal., 11 (2000), pp. 85-93.
  [7] L. Bergamaschi, G. Pini, and F. Sartoretto, Approximate in-
           verse preconditioning in the parallel solution of sparse eigen-
           problems, Numer. Lin. Alg. Appl., 7 (2000), pp. 99-116.
  [8] M. L. Bittencourt,  C. C. Douglas,  and R. A. Feij'oo,  Non-
           nested  multigrid  methods  for  linear  problems,  Numer. Meth.
           PDE, 17 (2001), pp. 313-331.
  [9] _______, Adaptive non-nested multigrid methods, Eng. Comput., 19
           (2002), pp. 158-176.
 [10] D.  H.  Boley  and  T.  Goehring,  LQ-Schur  projection  on  large
           sparse  matrix  equations,  Numer.  Lin.  Alg.  Appl.,  7  (2000),
           pp. 491-503.
 [11] W.  Bomhof  and  H.  Vorst,  A  parallel  linear  system  solver  for
           circuit simulation problems, Numer. Lin. Alg. Appl., 7 (2000),
           pp. 649-665.
 [12] B. Carpentieri, I. S. Duff, and L. Giraud, Sparse pattern se-
           lection strategies for robust Frobenius norm minimization pre-
           conditioners in electromagnetism,  Numer. Lin. Alg. Appl.,  7
           (2000), pp. 667-685.
 [13] L. M. Carvalho, L. Giraud, and G. A. Meurant, Local precon-
           ditioners for two-level non-overlapping domain decomposition
           methods, Numer. Lin. Alg. Appl., 8 (2001), pp. 207-227.
 [14] A. Chronopoulos and D. Kincaid, On the Odir iterative method
           for nonsymmetric indefinite linear systems, Numer. Lin. Alg.
           Appl., 8 (2001), pp. 71-82.
 [15] C. C. Douglas, J. Hu, J. Ray, D. T. Thorne, and R. S. Tumi-
           naro, Fast, adaptively refined computational elements in 3D,
           in Computational Science - ICCS 2002, vol. 3, Springer-Verlag,
           Berlin, 2002, pp. 774-783.
 [16] A. A. Dubrulle, Retooling the method of block conjugate gradients,
           Elect. Trans. Numer. Anal., 12 (2001), pp. 216-233.
 [17] D. Dureisseix and C. Farhat, A numerically scalable domain de-
           composition method for the solution of frictionless contact prob-
           lems, Int. J. Numer. Meth. Engng., 50 (2001), pp. 2643-2666.
[18] Q. Fang and T. Yamamoto, Superconvergence of finite difference
          approximations for convection-diffusion problems, Numer. Lin.
          Alg. Appl., 8 (2001), pp. 99-110.
[19] C.  Farhat,  M.  Lesoinne,  and  K.  Pierson,  A  scalable  dual-
          primal domain decomposition method, Numer. Lin. Alg. Appl.,
          7 (2000), pp. 687-714.
[20] B. Fischer and F. Peherstorfer, Chebyshev approximation via
          polynomial mappings and the convergence behaviour of Krylov
          subspace  methods,  Elect.  Trans.  Numer.  Anal.,  12  (2001),
          pp. 205-215.
[21] M. J. Gander and F. Nataf, AILU: A preconditioner based on the
          analytic factorization of the elliptic operator, Numer. Lin. Alg.
          Appl., 7 (2000), pp. 505-526.
[22] T. Gjesdal, Smoothing analysis of multicolour pattern schemes, J.
          Comput. Appl. Math., 85 (1987), pp. 345-350.
[23] _______, A note on the additive correction multigrid method, Interna-
          tional Communications in Heat and Mass Transfer, 23 (1996),
          pp. 293-298.
[24] _______, Local grid refinement method for improved gas safety analy-
          sis, in Computational Fluid Dynamics '98: (Proceedings of the
          Fourth  ECCOMAS  Conference  on  Computational  Fluid  Dy-
          namics), K. D. Papailiou, D. Tsahalis, J. P'eriaux, C. Hirsch,
          and M. Pandolfi, eds., vol. 1, John Wiley & Sons, 1998, pp. 398-
[25] _______, Local grid refinement for improved description of leaks in
          industrial gas safety analysis, Computing and Vizualisation in
          Science, 3 (2000), pp. 25-32.
[26] T. Gjesdal and M. E. H. Lossius, Comparison of pressure correc-
          tion smoothers for multigrid solution of incompressible flow.,
          Int. J. Numer. Methods Fluids, 25 (1997), pp. 393-405.
[27] T.  Gjesdal  and  R.  Teigland,  Accuracy  and  stability  of  semi-
          implicit finite difference advection schemes, Commun. Numer.
          Meth. Engng., 14 (1998), pp. 647-655.
[28] G. Golub, A. Sameh, and V. Sarin, A parallel balanced method for
          sparse systems, Numer. Lin. Alg. Appl., 8 (2001), pp. 297-316.
[29] L. Grosz, Preconditioning by incomplete block elimination, Numer.
          Lin. Alg. Appl., 7 (2000), pp. 527-541.
[30] L. Hemmingsson-Franden and A. Wathen, A nearly optimal pre-
          conditioner for the Navier-Stokes equations, Numer. Lin. Alg.
          Appl., 8 (2001), pp. 229-243.
[31] V.  Heuveline  and  C.  Bertsch,  On  multigrid  methods  for  the
          eigenvalue computation of nonselfadjoint elliptic operators, E.
          W. J. Numer. Anal., 8 (2000), pp. 275-297.
[32] S. A. Kharchenko, L. Y. Kolotilina, A. A. Nikishin, and A. Y.
          Yeremin, A robust ainv-type preconditioning method for con-
          structing  sparse  approximate  inverse  preconditioners  in  fac-
          tored form, Numer. Lin. Alg. Appl., 8 (2001), pp. 165-179.
[33] A.  Klawonn  and  L.  Pavarino,  A  comparison  of  overlapping
          Schwarz  methods  and  block  preconditioners  for  saddle  point
          problems, Numer. Lin. Alg. Appl., 7 (2000), pp. 1-25.
[34] L. Y. Kolotilina, A. A. Nikishin, and A. Y. Yeremin, An in-
          complete LU-factorization algorithm based on block bordering,
          Numer. Lin. Alg. Appl., 7 (2000), pp. 543-567.
[35] P. Ladeveze and D. Dureisseix, A micro / macro approach for
          parallel  computing  of  heterogeneous  structures,  International
          Journal for Computational Civil and Structural Engineering,
          1 (2000), pp. 18-28.
[36] P. Ladeveze, O. Loiseau, and D. Dureisseix, A micro-macro and
          parallel computational strategy for highly heterogeneous struc-
          tures, Int. J. Numer. Meth. Engng., 52 (2001), pp. 121-138.
[37] D.  Lahaye,  Algebraic  Multigrid  for  Two-Dimensional  Time-
          Harmonic   Magnetic   Field   Computations,    PhD   thesis,
          Katholieke Universiteit Leuven, Leuven, Belguim, 2001.
[38] W. Li, W. Sun, and K. Liu, Parallel multisplitting iterative meth-
          ods for singular M-matrices, Numer. Lin. Alg. Appl., 8 (2001),
          pp. 181-190.
[39] G. Lube, L. M"uller, and H. M"uller, A new nonoverlapping do-
          main decomposition method for stabilized finite element meth-
          ods applied to the nonstationary Navier-Stokes equations, Nu-
          mer. Lin. Alg. Appl., 7 (2000), pp. 449-472.
[40] J. C. Mandal and H. S. Rajput, An improved multigrid method
          for Euler equations, J. Comput. Mech., 23 (1999), pp. 397-403.
[41] G. A. Meurant, Numerical experiments with algebraic multilevel
          preconditioners, Elect. Trans. Numer. Anal., 12 (2001), pp. 1-
[42] K.  Moriya  and  T.  Nodera,  The  DEFLATED-GMRES(m,k)
          method with switching the restart frequency dynamically, Nu-
          mer. Lin. Alg. Appl., 7 (2000), pp. 569-584.
[43] Y. Notay, A robust algebraic multilevel preconditioner for nonsym-
          metric M-matrices, Numer. Lin. Alg. Appl., 7 (2000), pp. 243-
[44] M.  A.  Olshanskii,  Iterative  solver  for  the  Oseen  problem  and
          numerical solution of incompressible Navier-Stokes equations,
          Numer. Lin. Alg. Appl., 6 (1999), pp. 353-378.
[45] I. Perugia and V. Simoncini, Numer. Lin. Alg. Appl., 7 (2000),
          pp. 585-616.
[46] B. Poirier, Efficient preconditioning scheme for block partitioned
          matrices with structured sparsity,  Numer. Lin. Alg. Appl.,  7
          (2000), pp. 715-726.
[47] J. E. P. R. Lazarov and P. S. Vassilevski, Iterative solution of a
          coupled mixed and standard galerkin discretization method for
          elliptic problems, Numer. Lin. Alg. Appl., 8 (2001), pp. 13-31.
[48] R.Becker and M. Braack, Multigrid techniques for finite elements
          on locally refined meshes,  Numer. Lin. Alg. Appl.,  7 (2000),
          pp. 363-379.
[49] J. K. Reid and J. A. Scott, Reversing the row order for the row-
          by-row frontal method, Numer. Lin. Alg. Appl., 8 (2001), pp. 1-
[50] Y. Saad, Further analysis of minimum residual iterations, Numer.
          Lin. Alg. Appl., 7 (2000), pp. 67-93.
[51] S. Serra Capizzano and C. Tablino Possio, High-order finite dif-
          ference schemes and Toeplitz based preconditioners for elliptic
          problems, Elect. Trans. Numer. Anal., 11 (2000), pp. 55-84.
[52] M. Sosonkina, J. T. Melson, Y. Saad, and L. T. Watson, Pre-
          conditioning strategies for linear systems arising in tire design,
          Numer. Lin. Alg. Appl., 7 (2000), pp. 743-757.
[53] J. Stefanovski, Generating equations approach for quadratic ma-
          trix equations, Numer. Lin. Alg. Appl., 6 (1999), pp. 295-326.
[54] S. Turek, CFD for incompressible flow: numerical efficiency versus
          gigaflops, Numer. Lin. Alg. Appl., 7 (2000), pp. 473-482.
[55] D. Vanderstraeten, An accurate parallel block Gram-Schmidt al-
          gorithm without reorthogonalization, Numer. Lin. Alg. Appl., 7
          (2000), pp. 219-236.
[56] M. Verbeek, Repairing near-singularity for dense EMC problems
          by adaptive basis techniques, Numer. Lin. Alg. Appl., 7 (2000).
[57] W. L. Wan, Interface preserving coarsening multigrid for elliptic
          problems  with  highly  discontinuous  coefficients,  Numer.  Lin.
          Alg. Appl., 7 (2000), pp. 727-741.
[58] P.   Wesseling,    An   Introduction   to   Multigrid   Methods,
,  Cos  Cob,  CT,  2001.    Reprint  of
          the 1992 edition.
[59] D. Yang, C++ and Object Oriented Numeric Computing for Sci-
          entists and Engineers, Springer- Verlag, New York, 2001.
[60] J.  Zitko,  Generalization  of  convergence  conditions  for  restarted
          GMRES, Numer. Lin. Alg. Appl., 7 (2000), pp. 117-131.


End of MGNet Digest